По-видимому, математики, которых специально обучают обращению с абстракциями, начинают мыслить отчасти по-особому. Одни из них перестают это замечать и утверждаются в убеждении, что так мыслят все. Другие же достаточно трезво оценивают применимость своих ограниченных представлений к реальным ситуациям и с удовольствием рассказывают анекдоты про тех, кто этой ограниченности не замечает (или не желает замечать). Вот три таких анекдота.
Жена говорит мужу-математику: «Купи батон, а если будут яйца, возьми десяток». Муж приносит десять батонов. (Действительно, сказанное женой имеет – на формальном уровне – два смысла, и муж руководствуется тем из них, который аналогичен смыслу фразы: «Купи один батон, а если хватит денег, возьми десяток».)
Математика окликают с заплутавшего воздушного шара: «Где мы?» – «На воздушном шаре». (В другом, более пространном варианте анекдота после обмена репликами один из воздухоплавателей замечает: «Все ясно. Это математик». «С чего ты взял?» – спрашивает другой. «Он подумал, прежде чем ответить, и ответ дал совершенно точный – и совершенно бессмысленный».)
Пассажиры поезда наблюдают в окно нескончаемые стада белых овец. И вдруг замечают чёрную овцу, повернувшуюся к поезду боком. «О, здесь бывают и чёрные овцы!» – восклицает один. «По меньшей мере одна овца с по меньшей мере одним чёрным боком», – поправляет его другой, математик.
«Сказка ложь, да в ней намёк! Добрым молодцам урок». Эти анекдоты весьма поучительны: они в наглядной и сжатой форме выражают идею о том, что чрезмерная точность может быть вредной, способной мешать адекватному восприятию текста. Здесь есть основа для уважительного диалога между гуманитарием и математиком, диалога, полезного для обеих сторон. В этом диалоге математик обучает гуманитария – нет, не так, не обучает, а делится своими представлениями о том, сколь важна точность, причём не только точность выбора слов, о которой говорил ещё Декарт, процитированный нами в эпиграфе, но и точность построения синтаксических конструкций. Математик в этом диалоге пытается передать гуманитарию свою способность увидеть логический каркас текста. Гуманитарий же делится с математиком своими соображениями о важности неточности; он объясняет математику, что и «плоть» текста, облекающая его логический каркас, и контекст, в котором возникает текст, не менее существенны, чем упомянутый каркас. Окружающий мир, говорит гуманитарий, аморфен и расплывчат, и потому неточные, расплывчатые тексты и образы более приспособлены для адекватного его отражения, нежели тексты и образы математически точные.