Криптономикон - страница 10

Шрифт
Интервал


– Какая жуткая мысль, – заметил Руди.

– Он – писатель, – сказал Алан. – Лоуренс, не обижайся, пожалуйста, но можно спросить: ты вообще различаешь чужие фамилии? Кроме родственников и ближайших друзей?

Лоуренс, по всей видимости, захлопал глазами.

– Я пытаюсь понять: это все отсюда, – Алан протянул руку и костяшками пальцев постучал Лоуренса по голове, – или ты иногда берешь какие-то идеи у других?

– В детстве я один раз видел ангелов в церкви, в Виргинии, – ответил Лоуренс, – но, думаю, они были из моей головы.

Однако позже Алан сделал новый заход. Они добрались до знаменитой сторожевой башни и увидели, что вся достопримечательность – одинокая винтовая лестница в никуда, под ней – небольшая площадка, усеянная битыми бутылками. Палатку разбили у озера, полного бурых, липнущих к телу водорослей. Оставалось только пить шнапс и говорить о математике.

Алан сказал:

– Послушай, Бертран Рассел и еще один тип по фамилии Уайтхед написали «Principia Mathematica».

– Сейчас ты меня точно подкалываешь, – сказал Уотерхауз. – Даже я знаю, что «Principia Mathematica» написал сэр Исаак Ньютон.

– Ньютон написал другую книгу, которая тоже называлась «Principia Mathematica»[4], хотя на самом деле она не про математику, а про то, что мы теперь назвали бы физикой.

– Тогда почему он назвал ее «Principia Mathematica»?

– Различие между физикой и математикой было нечетким во времена Ньютона…

– А может быть, и в наше фремя, – сказал Руди.

– …и это прямо относится к тому, о чем я собираюсь говорить, – продолжал Алан. – Я про расселовские «Основания математики», в которых они с Уайтхедом начали абсолютно с пустого места и выстроили все – всю математику – на небольшом числе основных принципов. И вот почему я тебе это говорю, Лоуренс… Эй, Лоуренс! Проснись!

– М-м-м?

– Руди, возьми палку – да, эту – и следи за Лоуренсом. Когда глаза у него начнут вот так стекленеть, тыкай его в бок.

– Мы не в английской школе, тут так нельзя.

– Я слушаю, – сказал Лоуренс.

– Из «ОМ» следует абсолютно радикальная вещь – все в математике можно выразить определенной последовательностью символов.

– Лейбниц сказал это много раньше! – возмутился Руди.

– Ну, Лейбниц предложил символы, которые мы используем в дифференциальном исчислении, но…

– Я не про это!

– И он изобрел матрицы, но…

– И не про это тоже!