Сначала рассмотрим другой вопрос: можно ли выстрелить из пушки так, чтобы ядро никогда не упало на Землю, а вечно кружилось вокруг нашей планеты, наподобие спутника? Оказывается, что это вполне возможно. В самом деле, почему ядро, выброшенное пушкой горизонтально, в конце концов падает на Землю? Потому, что притяжение Земли искривляет его путь; оно следует не по прямой линии, а по кривой, и потому, наконец, встречается с Землей. Земная поверхность, правда, тоже искривлена, но путь ядра изгибается круче, чем земная поверхность. Однако кривизну пути ядра можно ослабить и сделать ее одинаковой с искривлением земного шара. Кáк этого достигнуть, скажем после, – а пока обратим внимание читателя на то, что при таком условии ядро никогда не упадет на Землю! Оно будет следовать по кривой, концентрической с окружностью земного шара, другими словами – сделается его спутником, как бы второй Луной.
Рис. 13. Как надо стрелять из пушки, чтобы ядро никогда не упало на землю.
Теперь рассмотрим, каким образом добиться того, чтобы ядро, выброшенное пушкой, шло по пути, не менее искривленному, чем земная поверхность. Оказывается, что для этого необходимо только сообщить ядру достаточную скорость. Обратите внимание на рис. 13, изображающий разрез земного шара. На горе в точке A стоит пушка. Ядро, выброшенное ею по касательной, было бы через секунду в точке B, – если бы не существовало притяжения Земли. Тяжесть меняет дело, и под влиянием этой силы ядро через секунду окажется не в точке B, а на 5 метров ниже, в точке C. Пять метров – это путь, проходимый всяким свободно падающим телом в первую секунду под влиянием силы тяжести близ поверхности Земли[5]. Если, опустившись на 5 метров, наше ядро окажется над уровнем земли ровно настолько же, насколько и в точке A, – то это значит, что оно следует по кривой, концентрической с окружностью земного шара.
Рис. 14. При скорости 7. верст в секунду пушечное ядро может превратиться в спутника земного шара.
Теперь вопрос в том, чтобы вычислить отрезок АВ – тот путь, какой проходит ядро в секунду. Вычислить его нетрудно из треугольника АОВ, в котором ОА = радиусу земного шара (6 000 000 метров); ОС = ОА; ВС = 5 метров, следовательно, ОВ = 6 000 005 метров. Отсюда, по теореме Пифагора, имеем:
т. е. около 7½ верст.