Доказано это, как будто строго, а именно методом математической индукции.
Но ведь последний в ряду – совершенно лысый человек! Однако лысый, так сказать, только фактически: мы видим, что у него на голове нет волос, и именно поэтому мы и поставили его в конце ряда. Но, рассуждая, мы приходим к заключению, что он не является лысым. Мы оказываемся, таким образом, перед дилеммой: нам остается либо верить своим глазам и не верить своему уму, либо наоборот.
Интересно, что, используя прием Евбулида, можно доказать и прямо противоположное утверждение, что «волосатых» людей нет и все являются лысыми. Для этого достаточно начать с другого конца образованного нами ряда людей.
Здесь уже не просто рассогласование чувств и разума, а прямое противоречие в самом разуме. Удалось доказать с равной силой как то, что ни одного лысого нет, так и то, что все являются совершенно лысыми. И оба доказательства были проведены с помощью метода математической индукции, в безупречность которой мы верим со школьных лет и которая лежит в основании такой строгой и точной науки, как математика.
Парадокс «куча» строго аналогичен парадоксу «лысый». Одно зерно {один камень и т. п.) не образует кучи. Если n зерен не образуют кучи, то и n +1 зерно не образуют кучи. Следовательно, никакое число зерен не может образовать кучи.
Возможность всех этих и подобных им доказательств означает, что принцип математической индукции имеет строго ограниченную область приложения. Он не должен применяться, в частности, в рассуждениях об объектах, обозначаемых неточными, расплывчатыми понятиями.
Возникает, однако, вопрос: благодаря каким свойствам математических понятий парадоксы, подобные описанным, не могут появиться в математике? В чем состоит та особая «жесткость» математических объектов, которая дает возможность распространить на них математическую индукцию? Или, говоря иначе, какие именно объекты являются «математическими», подпадающими под действие принципа математической индукции?
Из этих вопросов можно сделать, в частности, вывод, что при обосновании математики принцип математической индукции не должен приниматься в качестве самоочевидного и исходного.
Характерная особенность неточных понятий заключается в том, что с их помощью можно конструировать неразрешимые высказывания. Относительно таких высказываний невозможно решить, истинны они или нет, как, скажем, в случае высказываний: «Человек тридцати лет – молод» и «Тридцать лет – это средний возраст».