Удивительная физика - страница 52

Шрифт
Интервал


МАГИЯ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Можно ли вращаться по инерции?

Действительно, раскрутил карусель, – и вертись себе по инерции. Если подшипники карусели хорошие, то это можно делать достаточно долго. Современные маховики в накопителях энергии вращаются без помощи мотора более недели. Чем не вращение по инерции? Более того, если «помогать» этому маховику мотором, то он будет вращаться с совершенно постоянной угловой скоростью. Можно ли это назвать вращением по инерции?

Строго говоря, нет. Мы же раскритиковали Галилея, который именно движение точки по кругу считал инерционным. Но это потому, что на точку в этом случае должна обязательно действовать внешняя сила. А тогда движение уже не инерционное.

Поступим хитрее – возьмем много точек, расположенных по кругу, скрепим их друг с другом покрепче и раскрутим. Вот мы и получили маховик, который вращается, заметьте, без приложения внешних сил (мы его не трогаем!). Поместим такой маховик в космическое пространство – не понадобится ни подвес, ни мотор. Предмет сам собой вращается, никаких сил не требует.

Отвечайте, коллеги-физики, – по инерции он движется или нет?

Вопрос, казалось бы, для школьника, но боюсь, что он станет проблемой и для специалиста-физика.

Ответ первый:

– Да он вообще не движется, центр его масс, который находится на оси, неподвижен, стало быть, маховик неподвижен!

– Нет, – не согласимся мы, – а как же его кинетическая энергия? Может ли неподвижное тело обладать кинетической энергией и немалой?

Второй ответ:

– Это движение по инерции, потому что оно происходит без какого-либо внешнего воздействия!

– Позвольте, – возразим мы, – но такое движение согласно первому закону Ньютона может быть только прямолинейным и равномерным. Может, Ньютон чего-нибудь не учел?

Все учел Ньютон, просто вопрос не так уж тривиален, как может показаться сразу.

В чем различие между инерцией прямолинейного и вращательного движения?

Как известно, инерция, или инертность, массивной точки зависит только от ее массы. Масса является мерой инертности тела при прямолинейном движении. Значит, при таком движении на инерцию не влияет распределение масс в теле, и это тело можно смело принять за материальную (массивную) точку. Масса этой точки равна массе тела, а расположена она в центре тяжести, или, что почти то же, в центре масс, или центре инерции тела (поэтому «тело» в законах Ньютона справедливо заменено «материальной точкой»).