Много цифр. Анализ больших данных при помощи Excel - страница 23

Шрифт
Интервал


Кластерный анализ – это сбор различных объектов и разделение их на группы себе подобных. Работая с этими группами – определяя, что у их членов общего, а что отличает их друг от друга – вы можете многое узнать о беспорядочном имеющемся у вас массиве данных. Это знание поможет вам принимать оптимальные решения, причем на более детальном уровне, нежели раньше.

В этом разрезе кластеризация называется разведочной добычей данных, потому что эти техники помогают «вытянуть» информацию о связях в огромных наборах данных, которые не охватишь визуально. А обнаружение связей в социальных группах полезно в любой отрасли – для рекомендаций фильмов на основе привычек целевой аудитории, для определения криминальных центров города или обоснования финансовых вложений.

Одно из моих любимых применений кластеризации – это кластеризация изображений: сваливание в кучу файлов изображений, которые «выглядят одинаково» для компьютера. К примеру, в сервисах размещения изображений типа Flickr пользователи производят кучу контента и простая навигация становится невозможной из-за большого количества фотографий. Но, используя кластерные техники, вы можете объединять похожие изображения, позволяя пользователю ориентироваться между этими группами еще до подробной сортировки.

Контролируемое или неконтролируемое машинное обучение?

В разведочной добыче данных вы, по определению, не знаете раньше времени, что же за данные вы ищете. Вы – исследователь. Вы можете четко объяснить, когда двое клиентов выглядят похожими, а когда разными, но вы не знаете лучшего способа сегментировать свою клиентскую базу. Поэтому «просьба» к компьютеру сегментировать клиентскую базу за вас называется неконтролируемым машинным обучением, потому что вы ничего не контролируете – не диктуете компьютеру, как делать его работу.

В противоположность этому процессу, существует контролируемое машинное обучение, которое появляется, как правило, когда искусственный интеллект попадает на первую полосу. Если я знаю, что хочу разделить клиентов на две группы – скажем, «скорее всего купят» и «вряд ли купят» – и снабжаю компьютер историческими примерами таких покупателей, применяя все нововведения к одной из этих групп, то это контроль.

Если вместо этого я скажу: «Вот что я знаю о своих клиентах и вот как определить, разные они или одинаковые. Расскажи-ка что-нибудь интересненькое», – то это отсутствие контроля.