Джордж и код, который не взломать - страница 8

Шрифт
Интервал


148 = 1 × 100 плюс 4 × 10 плюс 8 × 1

и так далее.


Двоичная

В первых компьютерах применялась двоичная система счисления. Она названа так потому, что её основание – число 2: это значит, что в ней есть только две цифры – 0 и 1.

10 = 1 × 2 плюс 0 × 1 – то есть число 2 в десятичной системе;

11 = 1 × 2 плюс 1 × 1 – то есть число 3;

111 = 1 × 4 плюс 1 × 2 плюс 1 × 1 – то есть число 7.

В микросхемах первых компьютеров было всего два положения: «выключено» и «включено»; поэтому двоичный код – код, основанный на двоичной системе, – хорошо подходил для вычислений: ноль в ней соответствовал положению «выключено», а единица – «включено».


Шестнадцатеричная

Современные компьютеры намного сложнее, и код часто пишут в шестнадцатеричной системе счисления с основанием 16. Счет идёт от 0 до 9, а дальше 10 обозначается буквой A, 11 – буквой B и так далее до буквы F (то есть до 15).

Следовательно, C обозначает 12 из десятичной системы.

10 – так в шестнадцатеричной системе записывается число 16;

11 – это 17;

1F – это 31 (то есть 1 x 16 плюс F × 1 (15));

20 – это 32 (2 × 16);

F7 – это 247 (F × 16 (15 × 16 = 240) плюс 7 × 1);

100 – это 256.

Взлом кода

Взломом обычно называют расшифровку сообщений, когда у расшифровщика нет доступа к секретному ключу, которым пользовался отправитель. Другое название этого процесса – криптоанализ.


В докомпьютерную эру

До появления цифровых компьютеров шифровальщики работали с буквами или же с цифрами, заменявшими буквы. Например, можно было заменить каждую букву в сообщении другой буквой. В простом коде буква А заменялась на Д, Б заменялась на Е и так далее. Или же расположение букв в алфавите изменялось определённым образом.

При расшифровке такого сообщения имело смысл подсчитать, сколько раз та или иная буква появляется в зашифрованном тексте (это называется частотный анализ), а затем угадать какие-то из замен. Например, мы знаем, что буква «о» встречается в очень многих словах, так что если в зашифрованном тексте часто попадается буква «ч», то можно предположить, что она заменяет букву «о». А учитывая, что в сообщении всегда присутствует смысл, одной верной догадки может оказаться достаточно, чтобы правильно определить остальные замены.

В более сложных шифрах для каждой буквы сообщения могут применяться комбинации букв алфавита, и возможности для шифрования очень широки: так, если в алфавите 33 буквы, то для шифрования первой буквы комбинации могут составляться из 33 букв, для второй – из 32 букв, для третьей – из 31 и так далее.