Гассер нашел диссертацию Ходжкина “прекрасно исполненной экспериментальной работой” и пригласил его провести 1937 год в качестве внештатного сотрудника в Рокфеллеровском институте. В течение этого года Ходжкин подружился с Грундфестом, который работал в соседней лаборатории. Кроме того, Ходжкин посетил ряд других американских лабораторий и в ходе этих визитов узнал о гигантском аксоне кальмара, который он впоследствии с немалым успехом использовал в своих экспериментах. И наконец, он познакомился с женщиной, которая впоследствии стала его женой, – дочерью профессора Рокфеллеровского института. Неплохой набор достижений за один год!
Первое замечательное открытие Ходжкина и Хаксли было сделано в 1939 году, когда они приехали на морскую биологическую станцию в Плимуте, чтобы исследовать, как возникает потенциал действия в гигантском аксоне кальмара. Незадолго до этого британский нейроанатом Джон Зэкари Янг выяснил, что у кальмара, одного из самых быстрых морских пловцов, имеется огромный аксон диаметром в целый миллиметр, то есть почти в тысячу раз толще, чем большинство аксонов человеческого тела. Он примерно такой же толщины, как тонкие спагетти, и видим невооруженным глазом. Янг как сравнительный анатом знал, что возникающие у животных в ходе эволюции специализированные структуры помогают им выживать в своей среде обитания, и понял, что специализированный аксон кальмара, позволяющий ему на большой скорости спасаться от хищников, может оказаться для биологов ценным подарком судьбы.
Ходжкин и Хаксли сразу почувствовали, что гигантский аксон кальмара может оказаться именно тем, что им нужно, чтобы воплотить в жизнь мечту всякого нейробиолога – научиться регистрировать потенциал действия не только снаружи клетки, но и внутри и через это выяснить, как он возникает. Благодаря размеру этого аксона они могли ввести один электрод в цитоплазму клетки, оставив другой снаружи. Полученные данные подтвердили вывод Бернштейна, что потенциал покоя составляет около –70 милливольт и что он зависит от движения ионов калия по ионным каналам. Но когда они стимулировали аксон электрическим током, чтобы вызвать потенциал действия, как это делал Бернштейн, они, к своему удивлению, обнаружили, что амплитуда потенциала действия составляла 110 милливольт, а не 70, как предсказывал Бернштейн. Потенциал действия повышал электрический потенциал на мембране от –70 милливольт в покое до +40 милливольт на пике. Из этого поразительного несоответствия следовал важный вывод: гипотеза Бернштейна о том, что потенциал действия соответствует промежутку, когда клеточная мембрана становится проницаемой для всех ионов, была ошибочной. Судя по всему, во время потенциала действия мембрана по‑прежнему работала избирательно, пропуская сквозь себя одни ионы и не пропуская другие.