В то же время, чтобы построение логической системы >1 перестало быть чисто техническим упражнением, а сама система – сугубо формальной конструкцией, необходимо придать символам данной системы определенный логический смысл и содержательно ясную интерпретацию. Вопрос о такой интерпретации – самая сложная и спорная проблема многозначных логик. Как только между истиной и ложью допускается что-то промежуточное, встает вопрос: что означают высказывания, не относящиеся ни к истинным, ни к ложным? Кроме того, введение промежуточных степеней истины изменяет обычный смысл самих понятий истины и лжи.
Было много попыток содержательно обосновать многозначные логические системы, однако удовлетворительного объяснения до сих пор нет.
Непосредственным результатом революции, произошедшей в логике в конце 1ХХ-начале ХХ вв., было возникновение логической теории, получившей со временем название «классическая логика».
Классическая логика по-прежнему остается ядром современной логики, сохраняющим как теоретическую, так и практическую значимость. Основной задачей логики считается систематизация правил, которые позволяют из принятых утверждений выводить новые. Классическая логика подвергалась критике долгое время за то, что она не дает корректного описания логического следования, которое представляет собой отношение, существующее между утверждениями и обоснованно выводимыми из них заключениями. Для логики важно уточнить интуитивное представление о следовании, а также сформулировать на этой основе однозначно определенное понятие следования. Основная задача логики – систематизация правил, позволяющих из принятыхутверждений выводить новые.
Логическое следствие – это отношение, существующее между утверждениями и обоснованно выводимыми из них заключениями. Логика должна уточнить интуитивное представление о следовании и сформулировать на этой основе однозначно определенное понятие следованиия. Логическое следование ведет от истинных положений только к истинным. Классическая логика удовлетворяет этим требованиям, но многие ее положения плохо согласуются с привычными представлениями.
Так, классическая логика говорит, что из противоречивого суждения «Студент Иванов – отличник» и «Студент Иванов не является отличником» следует утверждение «Студенты не хотят учиться». Но при этом между утверждениями нет никакой содержательной связи. Здесь видно уклонение от обычного представления о следовании. Выводимое следствие должно быть каким-либо образом связано с тем, из чего оно выводится. Но классическая логика пренебрегает этим обстоятельством.