Общая теория статистики: конспект лекции - страница 7

Шрифт
Интервал


Признаком единицы совокупности называют ее характерную черту, конкретное свойство, особенность, качество, которое может быть наблюдаемо и измерено. Совокупность, изучаемая во времени или в пространстве, обязана быть сопоставима. Следовательно, на признаки единиц совокупности накладывается требование их сопоставимости и единообразия. Для этого необходимо использовать, например, единые стоимостные оценки. Для того чтобы качественно исследовать совокупность, изучают наиболее значительные или взаимосвязанные признаки. Количество признаков, характеризующих единицу совокупности, не должно быть излишним. Это усложняет сбор данных и обработку результатов. Признаки единиц статистической совокупности нужно комбинировать так, чтобы они дополняли друг друга и обладали взаимозависимостью.

Требование однородности статистической совокупности означает выбор критерия, по которому та или иная единица относится к изучаемой совокупности. Например, если изучается инициативность молодых избирателей, то необходимо установить границы возраста таких избирателей, чтобы исключить людей более старшего поколения. Можно ограничить подобную совокупность представителями сельской местности или, например, студенчества.

Присутствие вариации у единиц совокупности обозначает, что их признаки могут получать всевозможные значения или видоизменения у некоторых единиц совокупности. В связи с этим такие признаки именуются варьирующими, а вариантами называются отдельные значения или видоизменения

Признаки делятся на атрибутивные и количественные. Признак называется атрибутивным или качественным, если он выражается смысловым понятием, например пол человека или его принадлежность к той либо иной социальной группе. Внутри они подразделяются на номинальные и порядковые.

Признак называют количественным, если он выражен числом. По характеру варьирования количественные признаки подразделяются на дискретные и непрерывные. Примером дискретного признака является число людей в семье. В виде целых чисел выражаются, как правило, варианты дискретных признаков. К непрерывным признакам относятся, например, возраст, величина заработной платы, стаж работы и т. д.

По способу измерения признаки делятся на первичные (учитываемые) и вторичные (расчетные). Первичные (учитываемые) выражают единицу совокупности в целом, т. е. абсолютные величины. Вторичные (расчетные) непосредственно не измеряются, а рассчитываются (себестоимость, производительность). Первичные признаки лежат в основе наблюдения статистической совокупности, а вторичные определяются в процессе обработки и анализа данных и представляют собой соотношение первичных признаков.