Первая модель требует большого количества данных, поскольку иначе сложно найти различие между действительными коэффициентами частоты встречаемости патологии в группах. Кроме того, при использовании второй модели можно более точно определять подверженность предполагаемому риску, выделяя подгруппы с различными факторами риска. Формирование групп, основанное на учете относительного риска, широко применяется в отечественных и зарубежных исследованиях. Среди методов, направленных в первую очередь на выявление сочетаний факторов риска, следует назвать регрессионный анализ качественных признаков и множественную логистическую регрессию. Нужно отметить, что подобные процедуры, дающие возможность использовать геометрический подход (как и в методе главных компонент), позволяют повысить эффективность интерпретации сформированных групп риска специалистами за счет визуализации результатов обработки.
Среди методов распознавания образов, применявшихся для анализа и формирования групп риска, встречаются как детерминистские, так и стохастические. При выборе алгоритма необходимо учитывать характер анализируемых признаков (количественные, ранговые, классификационные или номинальные), гомогенность классов, характер распределения, объем выборок и др. Недостаточный учет или игнорирование этих моментов может исказить результаты и привести к ложным выводам. Вместе с тем необходимо помнить о важности выявления именно совокупных влияний наиболее существенных факторов. С этой целью В. И. Сердобольский и соавт. предложили метод оценки вклада каждого из признаков в прирост вероятности правильности классификации при условии отбора заданного числа наилучших признаков. Использование современных математических методов позволяет объективизировать оценки факторов риска, а в ряде случаев решать одновременно задачи выявления «симптомокомплексов риска» и прогнозирования заболеваний. Использование классического регрессионного, дискриминантного, кластер-анализа и метода главных компонент возможно в случае предварительного применения процедуры оцифровки неколичественных переменных, т. е. в присвоении им «разумных» в рамках конкретной задачи числовых меток. Проверка с их помощью эффективности различных мероприятий позволяет выбирать оптимальный характер и время проведения профилактических и лечебных мер.