Например, при сравнении вариации урожайности и себестоимости той или иной культуры нельзя использовать абсолютные показатели вариации, так как они будут иметь разные единицы измерения: ц/га и руб. за 1 т. В этом случае целесообразно среднее квадратическое отклонение использовать для расчета так называемого нормированного отклонения:
характеризующее отклонение индивидуальных значений признака от средней (Xi −X) и приходящееся на единицу среднего квадратического отклонения. Нормированное отклонение позволяет сопоставлять между собой отклонения, выраженные в различных единицах измерения. Практически нормированные отклонения изменяются в пределах от 0 до 3.
Однако в совокупности могут встречаться отдельные единицы, у которых t > 3. Это будет свидетельствовать о неоднородности совокупности, и такие единицы совокупности целесообразно исключить как аномальные, нетипичные для данной совокупности.
Если совокупность мала (3 ≤ n ≤ 8), то однородность совокупности, т. е. проверку годности первичных данных, можно осуществить следующим образом. Вычисляют показатель, характеризующий отношение разности между сомнительным и соседним значениями ранжированного в порядке возрастания ряда к разности между крайними значениями, т. е.:
если вызывает сомнение первое в ряду значение признака, и:
если вызывает сомнение последнее в ряду значение признака.
Вычисленную величину Q сопоставляют с табличным ее значением для данного числа наблюдений и уровня вероятности. Если Q>ф > Q>табл, то сомнительное значение следует исключить из обработки. Если же Q>ф < Q>табл, то сомнительное значение не отбрасывается. Рассмотрим эту методику на примере.
Допустим, получены следующие результаты содержания золы в образцах корма в процентах: 2,25; 2,19; 2,11; 2,38; 2,32 и 3,21.
Располагаем данные анализа в порядке возрастания их значений: 2,11; 2,19; 2,25; 2,32; 2,38; 3,21.
Вычисляем:
Далее находим Q>табл для n = 6 и вероятности p = 0,99 (табл. 4).
Таблица 4. Значения Qв зависимости от степени надежности (p)
и общего числа значений признака (n)
Величина Q>табл= 0,70. Следовательно, значение 3,21 должно быть исключено как нетипичное для данной совокупности.
При числе значений признака больше трех (и больше восьми) можно использовать другую методику определения пригодности первичных данных. По всем значениям признака в совокупности сначала рассчитывают среднюю величину (Х) и среднее квадратическое отклонение (σ), затем на основании разницы (без учета знака) между максимально отклоняющимся значением (X