Чтобы понять, как образовались все эти таинственные взаимосвязи между числами, небесами и музыкой, придется начать с интересного наблюдения: пифагорейцы придумали способ представлять числа в виде фигур из точек или камешков. Например, натуральные числа 1, 2, 3, 4,… они представляли в виде треугольников (как на рис. 1). В частности, треугольник, выстроенный из первых четырех целых чисел (треугольник из десяти камешков), называется тетрактида (тетрактис, тетрада, «четверица») и в глазах пифагорейцев символизировал совершенство и составляющие его элементы. Это нашло отражение в рассказе о Пифагоре, который приводит греческий сатирик Лукиан (ок. 120–180 гг.) Пифагор просит собеседника начать считать (цит. по Heath 1921). Тот считает: «Один, два, три, четыре…» Пифагор перебивает его: «Видишь? То, что ты принимаешь за четыре, на самом деле десять, идеальный треугольник и наша клятва». Философ-неоплатоник Ямвлих (ок. 250–325 гг.) говорит, что пифагорейцы и правда клялись особой клятвой (Iamblichus ca. 300 ADa; разбор см. у Guthrie 1987).
Именем клятву даю открывшего нам четверицу,
Неиссякаемой жизни источник.
(Здесь и далее пер. И. Мельниковой.)
Рис. 1
За что же так почитали тетрактиду? Дело в том, что в глазах пифагорейцев VI века до н. э. она воплощала в себе всю природу Вселенной. В геометрии – которая послужила трамплином для эпохальной древнегреческой научной революции – число 1 соотносилось с точкой , число два – с отрезком

или линией, число 3 – с плоскостью или поверхностью 
, а 4 – с трехмерным телом, тетраэдром 
. Поэтому тетрактида, по всей видимости, охватывала все пространственные измерения, доступные органам чувств.Однако это только начало. Тетрактида неожиданно проявилась даже в музыковедении. Считается, что именно Пифагор и пифагорейцы открыли, что если разделить струну так, чтобы длины частей относились как соседние натуральные числа, получаются гармоничные созвучные интервалы – это заметно, когда слушаешь выступление струнного квартета. Когда две подобные струны звучат одновременно, звук получается приятным, если отношения длин этих струн представляют собой простую пропорцию (Strohmeier and Westbrook 1999; Stanley 1687). Например, струны равной длины (соотношение 1:1) звучат в унисон, при соотношении 1:2 получается октава, 2:3 – чистая квинта, 3:4 – чистая кварта. Выходит, что тетрактида не только охватывает все пространственные измерения, но еще и может считаться воплощением математических соотношений, которые лежат в основе музыкальной гаммы. Этот волшебный на первый взгляд союз музыки и пространства стал для пифагорейцев важнейшим символом, дарующим чувство