Верховный алгоритм: как машинное обучение изменит наш мир - страница 9

Шрифт
Интервал


Я занимаюсь исследованиями машинного обучения более 20 лет. Интерес к этой теме во мне пробудила книга со странным названием, которую на последнем курсе колледжа я заприметил в книжном магазине. Она называлась «Искусственный интеллект». Машинному обучению в ней была посвящена одна короткая глава, но, прочитав ее, я немедленно пришел к убеждению, что в ней – ключ к искусственному интеллекту, что знаем мы об этой области так немного и что, может быть, я смогу внести свой вклад. Поэтому я распрощался с планами получить степень MBA и поступил в аспирантуру в Калифорнийском университете в Ирвайне. Машинное обучение было тогда второстепенной дисциплиной, а в Калифорнийском университете работала одна из немногих приличных исследовательских групп. Некоторые из моих однокурсников ушли, сочтя тему бесперспективной, но я не сдался. Для меня не было ничего важнее, чем научить компьютеры учиться – ведь если удастся это сделать, мы получим фору в решении любой другой проблемы. Прошло пять лет. Я заканчивал аспирантуру, а на дворе царила революция добычи данных. Диссертацию я посвятил объединению подхода символистов и аналогистов, большую часть последнего десятилетия соединял символизм и байесовский подход, а в последнее время – оба этих метода с коннекционизмом. Теперь пора сделать следующий шаг и попытаться свести воедино все пять парадигм.

Работая над этой книгой, я представлял себе несколько разных, но пересекающихся групп читателей.

Если вам просто любопытно, откуда столько шума вокруг больших данных и машинного обучения, и вы подозреваете, что тут все не так просто, как пишут в газетах, вы правы! Эта книга станет для вас своеобразным путеводителем.

Если вы интересуетесь прежде всего применением машинного обучения в бизнесе, она поможет вам 1) стать более разборчивым потребителем аналитики; 2) получить максимальную отдачу от своих специалистов по обработке и анализу информации; 3) избежать ловушек, которые убили столь многие проекты по добыче данных; 4) узнать, какие области можно автоматизировать без затрат на ручное кодирование программ; 5) уменьшить жесткость своих информационных систем и 6) предвидеть появление ряда новых технологий, которые уже не за горами. Я много раз наблюдал, как деньги и время уходят впустую из-за того, что проблемы решаются неправильным обучающимся алгоритмом, и как неверно интерпретируют то, что алгоритм сообщает. Чтобы избежать фиаско, достаточно лишь прочитать эту книгу.