Появление «высокой частоты» – высокочастотных колебаний давления при сгорании компонентов топлива в камере двигателя – штука совершенно непредсказуемая. «Высокая частота», входя в резонанс с собственными колебаниями отдельных элементов конструкции двигателя, почти мгновенно приводит их к разрушению или взрыву. Взрыв же ракетного двигателя, если он уже стоит на ракете, приводит к её неминуемой гибели, инициируя взрыв нескольких сотен тонн компонентов топлива в полёте или при падении машины на землю. Лучше в полёте. Обломки ракеты, по крайней мере, упадут в отведенный коридор, но стартовая позиция останется целой. А если взрыв, паче чаяния, произойдёт на старте, то будет уничтожены сложнейшие стартовые сооружения, иногда настолько грандиозные, что иной раз трудно поверить в то, что их создателем является человек.
На начальном этапе лётных испытаний так бывает со всеми ракетами. Но наибольший урон наносила в силу гигантских размеров ракета Н-1, предназначавшаяся для полётов на Луну. Взрыв более чем двух тысяч тонн компонентов топлива не только уничтожал всё, что было построено на старте, но, подобно миниатомному взрыву, в радиусе трёхсот – четырёхсот метров превращал песок в мелкодисперсную пыль.
Для того, чтобы достоверно определить, высокочастотные ли колебания становились причиной взрыва двигателя, испытатели должны «рыть землю», но найти кронштейны камер сгорания, с помощью которых камеры крепятся к раме двигателя. Если на кронштейнах есть следы «наклёпа», значит, двигатель навестила «высокая частота».
Но трудность создания ракетного двигателя заключается ещё и в том, что, добившись устойчивой работы камер сгорания в тех узких диапазонах, где удалось уйти от высокочастотных колебаний, необходимо ещё и обеспечить возможность регулирования давления в камерах, чтобы получить требуемые параметры полета ракеты.
Это намного усложняет процесс доводки двигателя. Для решения задачи приходится проводить сотни стендовых огневых испытаний – конструкторы опробируют головки камер сгорания с различным расположением форсунок, насыщением пристеночного слоя избытком того или иного компонента топлива, определяют зоны устойчивой работы по соотношению компонентов и давлению в камере.
Пока умные головы в отделах камер сгорания, турбонасосных агрегатов, агрегатов автоматики обдумывают очередные варианты конструкции, в лабораториях «проливают» водой дроссели, клапаны, насосы и пересчитывают результаты «проливок» на реальные компоненты топлива.