Таинственные страницы. Занимательная криптография - страница 9

Шрифт
Интервал


Теперь попробуйте применить подобный подход для слова из одиннадцати знаков. Не забудьте, что наш этюд называется «Числа Фибоначчи»!

Попробуйте сделать это самостоятельно, потратьте на задачу час, два, три… Столько, сколько вам понадобится. Но не забегайте вперед, чтобы просто прочитать ответ. Задача не так сложна: при ее решении вам не придется воспользоваться ни одной математической формулой!

Подсказка: ответ задачи – двенадцатое число Фибоначчи.

Решим эту задачу подробно – шаг за шагом. Итак, слово длиной в одиннадцать знаков уже задано. Предположим, что сначала нам дана последовательность из 1 знака, затем из 2, 3…., 11 знаков. Каждый знак, как вы помните, – это либо точка, либо тире.

Первый шаг. Вначале имеем слово длиной в один знак: *, где * обозначает либо точку, либо тире.

Очевидно, слово у нас прочитается единственным образом. Когда конкретное сообщение из одного знака у вас перед глазами, то вы увидите либо • либо –.

Второй шаг. Теперь задано слово длиной уже в два знака: **.

(*)(*), (**) – два способа декодирования. Других комбинаций попросту нет. Здесь круглыми скобками выделены отдельные буквы (однозначные либо двузначные) в полученном нами слове.

Третий шаг. Имеем слово длиной в три знака: ***.

(*)(*)(*), (*)(**), (**)(*) – уже три способа декодирования (будем располагать последовательность из букв в лексикографическом[2] порядке их длины). Как мы помним, буквы из трех знаков (***) по условию нашей задачи не существует.

Четвертый шаг. Имеем слово длиной в четыре знака: ****.

(*)(*)(*)(*), (*)(*)(**), (*)(**)(*), (**)(*)(*), (**)(**) – вот так сюрприз! У нас теперь не четыре, как можно было бы ожидать, а целых пять способов декодирования.

Пятый шаг. Имеем слово длиной в пять знаков: *****.

(*)(*)(*)(*)(*), (*)(*)(*)(**), (*)(*)(**)(*), (*)(**)(*)(*), (**)(*)(*)(*), (*)(**)(**), (**)(*)(**), (**)(**)(*) – восемь вариантов декодирования.

Можно продолжать в том же духе. Но попытаемся угадать закономерность, возникающую в ходе решения задачи.

Выпишем количество способов декодирования, полученных на каждом нашем шаге.


Первый шаг – 1 способ.

Второй шаг – 2 способа.

Третий шаг – 3 способа.

Четвертый шаг – 5 способов.

Пятый шаг – 8 способов.

И т. д…


Теперь хорошо видно, что справа у нас стоят числа Фибоначчи:

f>2 = 1, f>3 = 2, f>4