Один электрон поступает на на ген b>L, а затем гем b>H, а потом на хинон для дальнейшего восстановления за счет работы комплекса I или комплекса II. А вот второй электрон поступает на Fe-S белок, в результате происходит восстановление иона железа из Fe>3+ до Fe>2+, так как этот комплекс более сильный окислитель. Далее Fe-S белок окисляется цитохромом с>1, содержащим в составе гема ион железа. В ходе реакции ион железа в Fe-S белке окисляется от Fe>2+ в Fe>3+, а в цитохроме с>1 ион железа восстанавливается Fe>3+ до Fe>2+. Затем цитохром с>1 окисляется подвижным цитохромом с, также содержащим ион железа, который восстанавливается до положения Fe>2+.
Цитохром с мигрирует к последнему комплексу IV (цитохромоксидазе). Взаимодействуя с цитохромоксидазой цитохром с окисляется ионом меди в комплексе Cu>A. В результате ион железа в цитохроме с окисляется от Fe>2+ в Fe>3+ а ион меди в Cu>A восстанавливается Cu>2+ в Cu>+. В свою очередь комплекс окисляется ионом железа в геме а. А ион железа в составе гема а окисляется ионом железа в геме а>3, который востанавливается.
Восстановленный ион железа в геме а>3 окисляется ионом меди в комплексе Cu>B. Ион меди в этом в этом комплексе восстанавливается, а затем окисляется кислородом, параллельно присоединяя четыре протона, с образованием двух молекул воды.
Таким образом происходит перенос электронов от NADH к кислороду, то есть потока электронов или цепи последовательных окислительно-восстановительных реакций, где почти каждая молекула является акцептором электронов в предшествующей реакции и донором в последующей.
Как было рассмотрено выше, в ходе окислительно-восстановительных реакций также выделяется и поглощается энергия, в начальных этапах исследований считалось, что выделившаяся энергия затрачивается на синтез некоего макроэргического соединения, которое, гидролизуясь, дает энергию для фосфорилирования АДФ и образования АТФ. Но дальнейшие исследования показали, что на самом деле никакого соединения нет. А все экспериментальные исследования подтвердили гипотезу, а затем теорию предложенную в 1961 году Питером Митчеллом.
Хемиосмотическая гипотеза Митчелла
Митчелл предположил, что сопряжение переноса электронов и синтеза АТФ обеспечивается протонным градиентом, а не высокоэнергетическим ковалентным промежуточным продуктом или активированным белком. Согласно этой модели, перенос электронов по дыхательной цепи приводит к выбросу протонов из матрикса на цитоплазматическую сторону внутренней митохондриальной мембраны, где, таким образом, возрастает концентрация ионов Н