Тайны чисел: Математическая одиссея - страница 19

Шрифт
Интервал


Древние греки открыли следующую систематическую процедуру, весьма эффективную для нахождения небольших простых чисел. Задача состоит в том, чтобы найти действенный метод по отбрасыванию всех чисел, не являющихся простыми. Запишем числа от 1 до 100. Начнем с вычеркивания числа 1. (Как я упоминал, хотя греки считали 1 простым числом, современная математика так не поступает.) Перейдем к следующему числу, к 2. Это первое простое число. Затем зачеркнем каждое второе число после 2. Это, по существу, устраняет все числа, кратные 2, то есть все четные числа за исключением 2. Математики любят шутить, что 2 – странное простое число, потому что лишь оно четное… Но, возможно, юмор – не самая сильная сторона математиков.


Рис. 1.18. Зачеркните каждое второе число после 2


Теперь перейдем к минимальному незачеркнутому числу, в нашем случае к 3, и систематически отбросим все остальные числа, кратные 3:


Рис. 1.19. Теперь зачеркните каждое третье число после 3


Поскольку 4 уже было отброшено, далее мы переходим к 5 и зачеркиваем каждое пятое число после 5. Мы повторяем далее эту процедуру и переходим к минимальному числу n, которое еще не было устранено, и вычеркиваем все числа, расположенные через n после него:


Рис. 1.20. Наконец у вас останутся все простые числа из интервала от 1 до 100


Эта процедура прекрасна тем, что она совершенно механическая и не требует размышлений. К примеру, простое ли число 91? Если вы используете данный метод, то не нужно думать. 91 будет зачеркнуто, когда вы отбрасываете числа, кратные 7, ведь 91 = 7 × 13. На числе 91 зачастую происходит ошибка, потому что мы не стремимся учить таблицу умножения 7 до 13.

Эта систематическая процедура служит хорошим примером алгоритма, метода решения задачи путем выполнения заданного набора инструкций – так, по существу, устроена компьютерная программа. Именно этот алгоритм был открыт две тысячи лет назад в одном из центров математической мысли своего времени – в Александрии, которая располагается на территории современного Египта. Тогда Александрия была форпостом великой Греческой империи и славилась одной из лучших библиотек мира. В III в. до н. э. библиотекарь Эратосфен и придумал эту раннюю компьютерную программу для нахождения простых чисел.

Она называется решетом Эратосфена, потому что всякий раз, когда вы просеиваете группу составных чисел, вы как бы используете решето, у которого расстояние между прутьями равно достигнутому вами простому числу. Сначала расстояние между прутьями равно 2, затем 3, потом 5 и т. д. Единственный недостаток этого метода: он быстро становится неэффективным, если вы ищете все бо́льшие и бо́льшие простые числа.