Математика для гиков - страница 11

Шрифт
Интервал


Математик XIX века Питер Гатри Тейт создал классификацию узлов, согласно количеству их пересечений. Он также выдвинул три гипотезы, включая альтернирующие узлы (при проходе такого узла пересечения чередуются «сверху» и «снизу»), хиральные узлы (они не эквивалентны своему зеркальному отражению) и число закрученности (геометрическая величина, которая описывает зацепления в узлах). Все три гипотезы не так давно были доказаны.


1.9. Что скрывает карта метрополитена?

Математическое понятие: топология


Посмотрите на карту метро любого города в мире. Что вы видите? В отличие от атласов, в которых показывается каждый поворот и изгиб дороги, карта метро выглядит довольно просто. Она состоит из прямых линий, окружностей и кривых. (Для примера откройте карты метро Лондона, Бостона или Вашингтона.) Однако поезда метро редко следуют таким совсем не сложным маршрутам: поезда проезжают целую серию препятствий на пути от одной станции до другой. Но несмотря на такое расхождение, карта метро все равно помогает путешественникам в навигации. Как так получается, что эти карты выбрасывают такое количество информации и все равно остаются полезными?



Ответ скрывается в области математики, которая известна как топология. Топология связана с геометрией и изучает то, как формы меняются, когда их растягивают, сжимают, тянут, перекручивают или искажают. (Слово «топология» от греческого «место», «учение».) Однако изменения, изучаемые топологией, должны подчиняться правилу: изменения не должны нарушать оригинальную целостность фигуры. Например, фигуры, которые были порезаны или приклеены друг к другу, не могут считаться допустимыми предметами для топологического изучения. С другой стороны, создаются новые формы, когда вы до конца натягиваете резинку, скручиваете ее в шар или перекручиваете в форму кренделя – все это допустимо. Вкратце, в топологии вы должны быть способны вернуть новую форму в ее первоначальное состояние за одно непрерывное движение. Если вы можете это сделать, то с точки зрения топологии эти две формы эквивалентны.



Теперь отношение карты метро и настоящего маршрута поездов становится ясным. Карта метро – это топологическая трансформация физического маршрута подземки. В некотором смысле карта показывает версию маршрута поездов, которая была растянута и разглажена, будто она сделана из жвачки для рук. Согласно топологии, две формы – схема метро и маршрут, который в действительности существует в системе общественного транспорта, – идентичны.