Science and Technology in the 21st Century. Future Physics & Technology - страница 10

Шрифт
Интервал


If electroweak unification occurs just at around 100 GeV and grand unification, at 10>16 GeV, the unification of the GUT force with gravity is expected at the Planck energy, with a proto force particle, say, the prime force particle of God, at 10>19 GeV.

Some theories beyond the Standard Model include the modern cosmology forces: an inflationary force and dark energy, a hypothetical fifth force, the search for such a force is an ongoing line of experimental research in physics. In the super symmetry theories, there are scalar fields such as quintessence or moduli, dynamic quantities whose energy density can vary in time and space, acquiring their masses through super symmetry breaking to exchange new forces. New forces might account for the recent discovery of the universe expansion accelerating, or gravitational repulsion, a nonzero cosmological constant, vacuum energy, some changes of general relativity, as well as CP violations, dark matter, dark flow, or dark energy, having a strong negative pressure (acting inversely repulsively), with a view to come to a dynamically reversible cyclic model of the universe.

In fact, there might exist a reversed, or inverted, negative form of matter, with negative gravity, which qualitatively different to antimatter, materials composed of antiparticles, invisible to us as the curving of space, but detectable through its anti-gravitational effects of repulsion. This condition could be referred to as Dark Matter existing in a 5th dimensional hyperspace, being part of space-time's matter and equal in amount to ordinary, baryonic matter. Then inverted space-time becomes negative hyperspace and formally described by imaginary numbers, with all the nonstandard consequences as to its properties and behavior. There is a cosmological speculation as to a real composition of the universe. The standard model of cosmology indicates that dark energy contributes 68.3% of the total energy in the whole observable universe, with its density as low as (~ 7 × 10>-30 g/cm3), uniformly occupying empty space and having negative pressure (acting repulsively), while the mass–energy of dark matter makes 26.8%, ordinary (baryonic) matter contribute 4.9%, plus the rest components, such as neutrinos and photons, giving in a negligible amount. Other observations are figuring a universe made up 71.3% of dark energy and 27.4% of a combination of dark matter and baryonic matter.