Рисунок 15. Средние цены продажи ФЭ панелей со склада производителя или с первой точки продаж (долл. США за ватт пиковой мощности)
Источник: Mints, P. A Solar Panel Quality Manifesto. http://www.renewableenergyworld.com/rea/news/article/2012/09/a-solar-panel-quality-manifesto?cmpid=WNL-Friday-September7-2012
В результате такого резкого снижения затрат на строительство ФЭ станций сейчас во многих районах мира, в т.ч. в России солнечные энергоустановки на основе фотопреобразования показывают более экономичные результаты, чем установки с использованием дизельного топлива или мазута.
Принято различать несколько технологических направлений в солнечной энергетике: фотовольтаика (включая органическую фотовольтаику), концентраторная (тепловая) солнечная энергетика. Бóльшая часть технологий продолжает развиваться и улучшать эксплуатационные характеристики солнечных панелей (Рисунок 16).
Рисунок 16. Развитие технологий солнечной энергетики в мире
Источник: NREL, Malbranche, Philippe, CEA-INES, Presentation «OVERVIEW OF PV TECHNOLOGIES»
Наибольшее развитие в настоящее время получила фотовольтаика. В основном на базе её технологий сегодня реализуются масштабные проекты строительства солнечных электростанций (на конец 2015 года суммарная установленная мощность построенных в мире солнечных электростанций достигла более 230 ГВт).
Современная фотовольтаика представлена следующими технологиями и материалами:
1. кремниевые:
a. монокристаллические
b. мультикристаллические
c. технология тыльной пассивации PERC
d. технология сомкнутого заднего контакта MWT
e. технологии туннельного перехода
f. другие
2. тонкоплёночные (в том числе гетеропереходные):
a. CIGS (солнечные элементы на основе соединений меди, индия, галлия и селена)
b. на основе теллурида кадмия
c. на основе аморфного и микроморфного кремния
d. на основе арсенида галлия (гетеропереходная концентраторная фотовольтаика)
e. комбинированные гибридные технологии (на основе микроморфных и кристаллических элементов – так называемая HIT-технология)
3. органические технологии фотопреобразования (пока не достигли стадии промышленного развития).
Тонкоплёночные технологии еще более разнообразны и выбор той или иной технологии в первую очередь обусловлен климатическими особенностями той местности, где строится солнечная электростанция. Комбинированные гибридные технологии стали результатом разработок, осуществляемых в развитие тонкопленочной технологии, и благодаря сочетанию свойств обладают большим потенциалом роста эффективности преобразования солнечной энергии и снижения себестоимости. Их разработка ведется компаниями-лидерами отрасли, в том числе в Японии (Panasonic) и США (SolarCity, First Solar). В последнее время аналогичные разработки начаты и в России (компания «Хевел» совместно с ФТИ им Иоффе).