Характер физических законов - страница 17

Шрифт
Интервал


Я хочу сказать с самого начала, что математика приносит огромную пользу физике там, где речь идет о деталях сложных явлений, если установлены основные правила игры. И если бы я говорил только о взаимоотношении математики и физики, то большую часть времени отвел бы именно этому вопросу. Но, поскольку лекции посвящены характеру физических законов, я не имею возможности подробно разбирать, что происходит в сложных ситуациях, и прямо перейду к своей теме – характеру основных законов. Если снова обратиться к нашим шахматам, то основные законы здесь – это правила, по которым движутся фигуры. Математику можно использовать в сложной обстановке, чтобы сообразить, какие ходы в данных обстоятельствах наиболее выгодны. Но для того чтобы выразить простую суть основных законов, требуется очень мало математики. В шахматах это можно сделать на нашем обычном языке.

В физике же и для основных законов нам нужна математика. Я приведу два примера: в одном математика, по существу, необязательна, а в другом необходима. Первый – закон физики, называемый законом Фарадея, который гласит, что при электролизе количество осажденного вещества пропорционально силе тока и времени его действия. Иначе говоря, количество осажденного вещества пропорционально заряду, проходящему через систему. Звучит это очень математически, но на самом деле все сводится к тому, что электроны, проходящие по проводам, несут только по одному заряду. В частности, можно предположить, что каждый электрон вызывает осаждение одного атома. Тогда число осажденных атомов равно числу прошедших электронов, т. е. пропорционально заряду, протекшему по проводу. Таким образом, этот закон, который кажется математическим, в основе своей прост и на самом деле не требует знания математики. Для осаждения одного атома нужен один электрон – это, конечно, математика, но не та математику, о которой мы здесь говорим.

Второй пример – это закон тяготения Ньютона, который мы рассматривали в предыдущей лекции. Я привел вам уравнение



чтобы поразить вас тем, насколько быстро математические символы могут передавать информацию. Я говорил, что сила пропорциональна произведению масс двух тел и обратно пропорциональна квадрату расстояния между ними, а также что тела реагируют на силы, изменяя свою скорость в направлении действия силы на величину, пропорциональную силе и обратно пропорциональную своим массам. Как видите, все это слова, и было совсем не обязательно писать уравнение. Тем не менее здесь есть математика, и мы можем спросить себя, почему такой закон может быть основным законом. Что делает планета? Неужели она смотрит на Солнце, видит, насколько оно удалено, и вычисляет на своем арифмометре обратный квадрат расстояния, чтобы узнать, как нужно двигаться? Ясно, что это не объяснение механизма гравитации! Вам, может быть, захочется взглянуть поглубже, и многие пытались это сделать. Еще Ньютона спрашивали о его теории: «Но ведь она ничего не говорит, она ничего не объясняет?» Ньютон отвечал: «Она говорит,