В классической модели поворотного движения величина поддерживающей силы выбрана таким образом, что при неизменной угловой скорости она полностью компенсирует истинную силу Кориолиса—Кеплера. При этом к телу фактически так же, как и в классической модели поступательного неуравновешенного движения, академически привязывается НСО с бесконечно большой массой, инерцию которой преодолеть естественно не возможно (см. гл. 1.2). Это полностью исключает странное для сил инерции реальное ускорение в направлении классической силы Кориолиса за счёт истинной силы Кориолиса-Кеплера.
Однако пример Фейнмана с вращающимся человеком с гантелями явно не удачен для устранения этой странности. При переменной угловой скорости появляется необходимость дифференцировать уравнение моментов не только по радиусу, но ещё и по угловой скорости. При этом соотношение истинной силы Кориолиса—Кеплера и поддерживающей силы будет изменяться, т.е. классическая сила Кориолиса будет иметь разную величину и разную формулу её определения по сравнению с классической формулой при постоянной и именно исходной угловой скорости. Естественно это так же было бы очень странной особенностью классической силы Кориолиса.
Вообще говоря, усреднение угловой и радиальной скорости поворотного движения в минимальном интервале времени до постоянных средних величин это совершенно правильный подход к определению динамики изменяющихся процессов. Однако при этом должны усредняться все параметры поворотного движения, включая и его мгновенный радиус. Нельзя усреднить угловую и линейную скорость, оставив при этом переменный радиус. Но усреднив в минимальном интервале времени абсолютно все параметры поворотного движения, мы получим равномерное вращательное движение по вписанной в абсолютную траекторию окружности, в общей кинематике которого явление Кориолиса естественно отсутствует!!!
Таким образом, условие неизменности угловой скорости в случае переменного углового вращения, вольно или невольно, но фактически возведенное в классической физике в ранг базового основополагающего принципа явления Кориолиса, т.е. её физического смысла, одновременно и лишает её этого смысла! При этом классическая сила Кориолиса, конечно лишается всех своих странностей разом, причём вместе с самой собой. И