Организация и математическое планирование эксперимента. Учебное пособие - страница 7

Шрифт
Интервал


Пример. На предприятии выпускается проволока различных диаметров. Отдел товарного контроля производит периодические замеры диаметра готовой проволоки. Результаты измерения (всего 50) проволоки диаметром 3,6 мм находятся в таблице 2.1. Значения диаметра проволоки отличаются друг от друга из-за того, что проволока производится в пределах допусков и диаметр может отличаться как в большую, так и в меньшую сторону и это не является нарушением технологии, также на результаты может влиять погрешность измерений.


Таблица 2.1 – Результаты замеров



Дальнейшую обработку данных ведем по следующей методике.

Для удобства необходимо отсортировать данные по порядку от большего к меньшему – таблица 2.2.

Для непрерывной случайной величины задают вероятность ее попадания в один из заданных интервалов области ее определения (поскольку вероятность того, что она примет какое-либо конкретное свое значение, стремится к нулю).


Таблица 2.2 – Упорядоченная таблица результатов замеров



Количество интервалов определяют по формуле



где n – количество измерений.



В качестве количества интервалов принимаем большее нечетное число – 7.

По таблице 2.2 определяем наибольшее и наименьшее значение х>min = 3,4, х>max = 3,8, диапазон изменений (размах) случайной величины L>x = 3,8 – 3,4 = 0,4. Тогда продолжительность каждого из семи интервалов Δх = 0,4/7 = 0,057. Значение продолжительности интервала достаточно округлить на порядок больший, чем точность измерений случайной величины.

Таким образом, получим семь интервалов, границы которых приведены в таблице 2.3.

Теперь подсчитаем сколько раз случайная величина попала в каждый из интервалов, обозначим это значение – m, и частотную вероятность попадания в каждый интервал по формуле 2.1.

Например в интервал 3,4…3,457 попадает всего два значения из таблицы 2.2 – это 3,4 и 3,45, частотная вероятность в этом случае будет: р = 2/50 = 0,04, результаты для остальных интервалов приведены в таблице 2.3. Сумма всех вероятностей должна быть равна единице.

Для построения функции распределения необходимо определить сумму всех вероятностей с начала интервала до требуемого значения. Т.е. ее значение для второго интервала 0,04+0,08 = 0,12, для третьего 0,04+0,08+0,14 = 0,26 и т. д. Последнее значение всегда должно быть равно 1. График интегрального закона распределения (функции распределения) приведен на рисунке 2.1.