В случае деревьев решений объяснение может строиться путем выписывания последовательности условий, проверенных для данного испытуемого на пути от корня дерева до листа. Эти условия образуют конъюнкцию, т. е. легко интерпретируемое логическое правило (Воронцов, 2007). Пример дерева, построенного с использованием выборки значений интерпретированных выше главных компонент SR-матриц и предсказывающего успешность выполнения задания теста Равена, приведен на рисунке 5.
Рис. 5. Дерево классификации, позволяющее правильно (в 70 % случаев) предсказывать результат выполнения задания («Выполнил верно» – «Pass» и «Выполнил неверно» – «NotPass») по величинам главных компонент «Horis» («He использовать горизонтальные переходы и использовать вертикальные») и «Vertic» («Использовать вертикальные переходы в правой нижней части матрицы Равена»)
В целом данное дерево можно интерпретировать следующим образом: если испытуемый придерживается определенных стратегий глазодвигательной активности, то скорее всего задания теста Равена будут пройдены успешно. Однако, если испытуемый зацикливается при рассмотрении элементов матрицы задания по углам, т. е. в верхней левой либо в нижней правой частях, то, вероятно, он не может установить зависимость между элементами матрицы задания и само задание пройдено не будет.
В случае применения линейных регрессионных моделей или дискриминантных функций выявление значимых объясняющих признаков также не составляет труда (достаточно воспользоваться подходящими статистическими критериями значимости коэффициентов модели), а их интерпретация зависит от абсолютной величины коэффициента и знака при нем.
Заключение
В ходе проекта было разработано программное обеспечение, позволяющее психологу проводить анализ экспериментальных данных видеоокулографии с помощью рассмотренного метода статистического анализа и методов выделения информативных признаков (в том числе и скрытых), не имея при этом глубоких познаний ни в математике, ни в программировании, точнее, при минимальных познаниях в данных областях. На данный момент на языке R (R Core Team, 2014) программно реализованы (автор – Борислав Поляков, выпускник факультета информационных технологий МГППУ):
– загрузка и предобработка входных данных, – ручная и автоматическая разметка стимульных материалов (выделение зон интереса), – алгоритм вычисления матрицы представления преемника, – построение расширенной таблицы данных со значениями входных переменных, необходимых для последующего анализа, – метод снижения размерности пространства признаков (метод главных компонент), – визуализация компонентных нагрузок для выбора интерпретируемых компонент, – алгоритм обучения дерева решений, – алгоритм оценки предсказательной способности дерева, – визуализация дерева решений.