Краткий курс по статистике - страница 14

Шрифт
Интервал


средняя арифметическая совокупности, состоящей из постоянных величин, равна этой постоянной:



4. Приведем также формулы расчета средней гармонической, средней геометрической, средней квадратической и средней степенной величин.

Формула расчета степенной средней:



где x>i– величины, для которых исчисляется средняя;

– средняя, где имеет место осреднение индивидуальных значений;

n – частота (повторяемость индивидуальных значений признака).

При к = формула превращается в формулу расчета средней гармонической.

Средняя гармоническая простая (невзвешенная) величина взаимосвязана со средней арифметической невзвешенной как величина, обратная средней арифметической, рассчитанная из обратных значений признака:



Средняя гармоническая взвешенная величина:



где ω – значения сводного, объемного, выступающего как признак-вес показателя.

Рассчитывается, когда имеются данные об объеме определяющего показателя, т. е. произведения осредняемого признака и признака-веса.

Также рассчитывается при наличии сведений об индивидуальных значениях осредняемого признака при отсутствии отдельных значений признака-веса.

Средняя степенная при показателе степени к = 0 становится средней геометрической величиной.


5. К основным видам средних геометрических величин относятся средняя геометрическая невзвешенная и средняя геометрическая взвешенная величины. Расчет средней геометрической невзвешенной величины: если показатель степени k = 0, то формула средней степенной



где П(х>i) – произведение индивидуальных значений осредняемого признака.


Применяется при наличии n коэффициентов роста. Индивидуальные значения признаков при этом становятся относительными величинами динамики (построены в виде цепных величин как отношение к предыдущему уровню каждого уровня в ряду динамики).

Средняя геометрическая невзвешенная величина характеризует средний коэффициент роста.

Средняя геометрическая взвешенная применяется в случае, если темпы роста остаются неизменными в течение нескольких периодов:



где

– средняя геометрическая взвешенная (средний темп прироста);

х – количество периодов, при которых темпы роста оставались неизменными.


6. Средняя квадратическая – средняя степенная при показателе степени k = 2.

Различают следующие основные виды средних квадратических величин: средняя квадратическая невзвешенная, средняя квадратическая взвешенная.