Кто изобрел современную физику? От маятника Галилея до квантовой гравитации - страница 40

Шрифт
Интервал


пропорциональна массе небесного тела M: A = GM с неким коэффициентом G (который тоже можно грубо оценить, считая среднюю плотность Земли близкой к плотности ее твердых пород).

В результате Галилей получил бы общую зависимость сразу для всех трех небесных тех – Земли, Юпитера и Солнца:


g (R) = GM/R>2,


и здесь константа G – не простая, а фундаментальная, поскольку одинакова для Земли, Юпитера и Солнца и, судя по этому, для любого другого тела.

Это и есть общий закон свободного падения, открыть который вполне мог Галилей на его уровне знаний и умений.

Новый закон уже намекает на гравитацию Ньютона, до которой оставалось более полувека. Но для Галилея всего важнее было бы оправдание его веры в физическое единство мира – и мира подлунного, и мира надлунного. Он понял бы, что причина падения тел на Земле и причина, определяющая орбиты планет, – одна и та же. А поскольку причину падения естественно называть притяжением (к Земле), то так можно назвать и планетную силу. Мысленный спутник Земли помог бы Галилею увидеть, что свободное падение и движение планет – явления глубоко родственные.

Так он понял бы, что слова Кеплера о планетно-солнечных притяжениях не столь и ребяческие. Никакой солнечной силы, движущей планетами, конечно, нет, но притяжение есть и подчиняется вполне определенному закону. Более того, из этого закона следует и (третий) закон Кеплера, связывающий время, за которое планета проходит свою орбиту, с ее радиусом (T>2~ R>3). Значит, из закона свободного падения, установленного в земных физических опытах, следует астрономический закон, полученный Кеплером в результате многолетнего анализа множества астрономических наблюдений. Следует пока лишь для круговых орбит. Но если ускорение свободного падения известно в каждой точке пространства вокруг большого небесного тела, то можно и ставить задачу о том, как изменится круговая орбита спутника, если его толкнуть. Труднее, конечно, было заподозрить и тем более доказать, что при этом окружность превратится в эллипс. Но зато теперь Галилей мог уже принять подсказку первого закона Кеплера – об эллиптичности планетных орбит, к великой радости автора и к успокоению историков, ломающих головы над молчанием Галилея по поводу законов Кеплера.

Имея в своем распоряжении мысленный спутник, Галилей вряд ли бы остановился на достигнутом, а понял бы также, что законы Кеплера… лишь приближенные. Запуская мысленный спутник на разных расстояниях от Земли, легко дойти до места посередине между Землей и Марсом. А тогда возникнет вопрос: мы запускаем спутник Земли или Марса? Владея понятием составного движения, Галилей “сложил” бы оба ускорения свободного падения с учетом разных направлений (нынешними словами – векторно) и получил бы суммарное движение, совсем не похожее на эллипс. Отсюда следовало бы, что законы Кеплера – приближенные, они тем точнее, чем дальше находятся все массивные тела от одного, “центрального”. И возникла бы общая задача о движении “спутника” вблизи нескольких массивных тел. Все это вело к представлению о всеобщем – “всемирном” – притяжении. Но оно уже было бы основано не на словах полуастрологического происхождения, как у Кеплера, а на физическом исследовании свободного падения вблизи поверхности Земли.