Посредством логистической регрессии осуществляется прогнозирование вероятности отклика для зависимой переменной от переменных независимых, которые включены в модель. Прогнозные значения вероятности можно использовать для разделения наблюдений на две группы.
При построении модели регрессии логистической можно осуществить отдельный анализ – анализ Receiver Operator Characteristic (ROC-кривых). Посредством данного анализа можно осуществить выбор оптимального порогового значения вероятности для классификации. ROC-кривую используют, чтобы представить результаты бинарной классификации и оценки уровня ее эффективности.
Использование логистической регрессии распространяется на решение задач, связанных с моделированием взаимосвязи и классификацией наблюдений. Она находит применение в скоринге: банковском (на ее основе возможно построение рейтинга заемщиков и управления кредитными рисками); потребительском (для моделирования потребительского поведения).
Регрессия мультиномиальная логистическая
Фото из источника в списке литературы [5]
В качестве логистической регрессии мультиномиальной рассматривают общий случай модели логистической регрессии, в ней у зависимой переменной имеются категории в количестве более двух.
Измерение зависимой переменной (ковариаты) в рассматриваемой регрессии возможно в таких шкалах, как порядковая и номинальная. В качестве нее может выступать переменная потребительского выбора торговой марки. Переменные независимые (факторы) могут быть количественными либо категориальными.
В данной модели для каждой из категорий переменной зависимой предусматривается построение уравнения логистической бинарной регрессии. Причем одной из категорий переменной зависимой отводится роль переменной опорной, и происходит сравнение с ней всех других категорий.
Посредством уравнения мультиномиальной логистической регрессии прогнозируется показатель вероятности принадлежности к каждой категории зависимой переменной согласно значениям переменных независимых.
2.4 Пробит-модель регресси. Регрессия Кокса. Анализ временных рядов
Пробит-модель регрессии
Фото из источника в списке литературы [6]
Пробит-модель является статистической моделью бинарного выбора, используемой для того, чтобы предсказывать вероятность возникновения какого-то события на базе функции нормального стандартного распределения.