Особенности конструкции газотурбинных двигателей - страница 5

Шрифт
Интервал


Столь существенное улучшение параметров достигнуто благодаря широкому применению двух- и трехвальных схем, повышению КПД узлов конструктивными мероприятиями, использованию конвективно-пленочного охлаждения лопаток турбин, дальнейшему совершенствованию материалов и технологических процессов и т. п.

Дальнейшее развитие ГТД для самолетов гражданской авиации протекает, в основном, по пути улучшения их топливной экономичности. Резервы для этого есть, в частности потому, что существующие ДТРД с большой степенью двухконтурности еще не достигли уровня ТВД по удельному расходу топлива. Радикальным средством уменьшения удельного расхода топлива ДТРД является дальнейшее увеличение степени двухконтурности, которое, однако, в рамках их схемы может привести к значительному возрастанию удельного веса, что недопустимо. Поэтому в настоящее время созданы и проходят опытную доводку ГТД качественно нового типа – винтовентиляторные двигатели (ТВВД), в которых движителем является винтовентилятор (ВВ), представляющий собой малогабаритный высоконагруженный многолопастной воздушный винт изменяемого шага. Диаметр ВВ примерно на 40% меньше диаметра обычного винта, поэтому он может допустить большую скорость полета (до 850 км/ч) при сохранении КПД на приемлемом уровне.

Удельный расход топлива винтовентиляторных двигателей должен быть ниже, чем у ТВД классической схемы, так как их газогенераторы имеют (в соответствии с достигнутым уровнем развития) значительно более высокие параметры рабочего цикла и эффективный КПД. За счет прироста скорости полета ТВВД могут обеспечить для самолетов уменьшение расхода топлива на единицу транспортной работы примерно на одну треть по сравнению с лучшими ТВД.

Возникшее противоречие между необходимостью повышения температуры газа и ограниченными прочностными возможностями турбины было разрешено созданием на основе ТРД нового типа газотурбинного двигателя (ТРДФ) с подогревом газа путем сжигания дополнительного количества топлива в специальной камере сгорания (форсажной камере), расположенной между турбиной и реактивным соплом.

При больших дозвуковых и околозвуковых скоростях целесообразно применять ДТРД. Высокотемпературные ТРД могут обеспечить малые сверхзвуковые скорости (до Мн=2,0) при высотах полета около 20 км. Полеты при скоростях, соответствующих Мн= 2,0…3,5, на высотах до 30 км освоены с помощью ТРДФ и ДТРДФ. Дальнейший переход к большим сверхзвуковым и гиперзвуковым скоростям (Мн=6…8) возможен с применением турбопрямоточных и других комбинированных двигателей.