С ньютоновской точки зрения падающий лифт – это неинерциальная система отсчета с однородным полем сил инерции, точно компенсирующих силы притяжения в центре масс. Однако во всех других местах этот баланс нарушается и образуется суммарное поле приливных сил, показанное на рис. 1.3. Эти силы заменяют силы тяжести в космическом корабле на орбите[19]. По этой причине ученые и инженеры, связанные с космосом, используют термин «микрогравитация» вместо невесомости.
1.2.7. Лунные приливы и отливы
Для объяснения лунных приливов на Земле в рамках ньютоновского подхода мы рассмотрим сначала гравитационное поле неподвижной Луны. Рассматривая ее как точечную массу, мы видим, что силовые линии ее гравитационного поля, т. е. направления ускорения свободного падения на Луну, радиальные. Таким образом, суммарная сила, действующая на любую частицу на Земле, является суммой притяжения к остальной части Земли и силы, действующей в направлении Луны (мы не рассматриваем другие небесные тела, чтобы избежать путаницы). Для перехода к системе отсчета, связанной с Землей, мы должны вычесть ускорение свободного падения в центре масс Земли из ускорения свободного падения, действующего на каждую точку, как показано на рис. 1.4. В результате мы получаем знакомую картину: приливы в направлении к и от Луны и отливы в перпендикулярных направлениях.
Таким образом, с ньютоновской точки зрения приливная сила – это просто разница ускорений свободного падения между произвольной точкой и некоторой опорной точкой, например центром Земли. С релятивистской точки зрения приливная сила – это то, что отличает гравитацию от сил инерции, вызванных, например, ускорением ракеты.
Переходя в систему свободно падающего наблюдателя, вы можете обнулить силу, действующую в одной точке, как правило, в центре масс, но в любой другой точке имеется ненулевая разность – приливная сила. В ОТО приливные силы являются проявлением кривизны пространства-времени.
Вопрос: Почему приливы, вызванные небольшой Луной, сильнее, чем приливы, вызванные огромным Солнцем?
Ответ: Формулу для приливной силы можно найти в учебниках, она утверждает, что эта сила обратно пропорциональна кубу расстояния. Тем не менее, вместо того чтобы просто использовать эту формулу, покажем, как эта зависимость от расстояния может быть получена с помощью простой аналогии.