Если мы выше ссылались на формальную математику, то наши противники ссылаются на реальную. Первая является свободным от любого наглядного созерцания рассуждением, которое рассматривает чистые формы математических связей и систем в наиболее общей универсальности, исследует их разнообразные возможные вариации и таким образом посредством глубочайшего проникновения в технику математических связей дает также большую техническую власть над математическими объектами, большую методическую свободу и искусность. Напротив, реальная математика опирается на наглядное созерцание, на нем основывает свои понятия и от него же получает свойственную ей реальность.
Стало быть, таким путем могли бы вновь попытаться спасти для интенциональных предметов, по крайней мере, в области математики[29], какой-то вид существования; однако также здесь обманчивая видимость тает при учете нескольких надстраивающихся друг над другом модификаций. Нет различных модусов существования или значимости, а где мы полагаем найти таковые, там либо высказывания являются модифицированными, либо различия касаются объема употребления, который благодаря привычному отношению к основной интересующей сфере кажется суженным, между тем как понятие одновременно в явно не выраженной форме обогащается.
Часто термин существование (Existenz) употребляется в смысле реального бытия (Dasein), существования внутри реальной действительности; здесь примитивное и более общее понятие существования содержательно обогащается и [его] объем сужается рамками реальных предметов. Истины, предложения, понятия также являются предметами, также в их отношении говорится о существовании в полном и прямом смысле, однако, они вообще не являются чем-то, что можно было бы встретить в реальной действительности. Насколько выражение «имеется какое-то А» может претендовать на смысл и истину, настолько же простирается сфера понятия существования. В соответствии с этим, является двусмысленным утверждение, что объекты, соответствующие математическим понятиям, не существуют, в зависимости от того, мыслят ли [при этом] реальную действительность или нет. Если бы мы имели, как верят многие, о геометрических образованиях адекватное наглядное представление в фантазии, тогда их представлениям соответствовала бы истина и все же, возможно, не действительность, как и тогда, к примеру, когда предположение действительного мира было бы обманчивой видимостью. Здесь дело обстоит подобным же образом, как и с понятиями чувственных качеств: в фантазме красного предмета красный цвет действительно существует, даже если в