Одураченные случайностью - страница 34

Шрифт
Интервал


подчеркивает, что видим только одну реализацию среди множества возможных. Очевидно, выборочная траектория может быть либо детерминированной, либо случайной.

Случайная выборочная траектория, называемая также случайным пробегом, есть математическое название последовательности виртуальных исторических событий, начинающихся с данного момента и заканчивающихся в другой момент, и появление которых соответствует некоторому уровню неуверенности. Однако не следует путать слова случайный и равновероятный (имеющий одинаковую вероятность). Примером случайной выборочной траектории может быть измеряемая ежечасно температура тела вашего кузена во время его болезни тифозной лихорадкой. Случайную выборочную траекторию можно представить как моделирование цены вашей любимой акции, определяемой ежедневно на закрытии рынка в течение, скажем, одного года. Начиная со 100$, цена в одном сценарии может остановиться на 20$, достигнув максимума в 220$. В другом сценарии она может достигнуть уровня 145$, повидав минимум в 10$. Другой пример ― эволюция содержимого вашего кармана в течение одного вечера игры в казино. Вы начинаете игру, имея 1000$, измерения делаете каждые 15 минут. В одной выборочной траектории в полночь Вы получите 2200$, в другой ― едва наскребаете 20$ на такси.

Стохастические процессы описывают динамику событий, разворачивающихся во времени. Стохастический ― это причудливое греческое название случайного. Эта отрасль теории вероятности изучает развитие последовательных случайных событий, которые можно даже назвать математикой истории. Ключ к процессу в том, что он включает в себе время.

Что такое генератор Монте-Карло? Вообразите, что Вы можете смоделировать совершенное колесо рулетки на своем чердаке без помощи плотника. Компьютерные программы могут моделировать что угодно, более того, с их помощью делать лучше и дешевле. Ведь, в частности, колесо рулетки, сделанное плотником, может «любить» какой-либо номер больше, чем другие, из-за возможной неровности в конструкции или полу чердака. Такая неровность называется уклоном.

Моделирование методом Монте-Карло больше всего похоже на игрушку. Можно выбирать тысячи и, возможно, миллионы случайных выборочных траекторий и смотреть на превалирующие характеристики их некоторых особенностей. Компьютер в таких занятиях является незаменимым инструментом. Очаровательная ссылка на Монте-Карло подчеркивает метафору моделирования случайных событий в манере виртуального казино. Набор условий, которые, как считается, преобладают в действительности, запускает коллекцию моделей возможных событий. Даже не имея математической подготовки, мы можем применить моделирование методом Монте-Карло, например, для 18-летнего ливанца, играющего в Русскую рулетку на определенную сумму, чтобы увидеть, сколько из этих попыток кончаются обогащением или сколько времени потребуется в среднем, чтобы увидеть его некролог. Мы можем заменить барабан револьвера, чтобы он содержал 500 пулеприемников вместо шести, что, очевидно, уменьшило бы вероятность смерти, и посмотреть результаты.