1. Логическое рассуждение.
2. Распознавание закономерности.
3. Действие от обратного.
4. Принятие другой точки зрения.
5. Анализ экстремальных ситуаций.
6. Решение более простой аналогичной задачи.
7. Организация данных.
8. Схематичное изображение, или визуальное представление.
9. Учет всех возможностей.
10. Обоснованное предположение и проверка.
Как мы уже говорили, редко когда задачу можно решить единственным способом. Решение, которое мы демонстрируем, представляет собой всего лишь один иллюстративный пример. Мы предлагаем читателю попытаться найти другие решения, возможно, более интересные и необычные. Если это вам удастся, мы скажем, что вы молодец! Кроме того, в некоторых случаях, когда доступно несколько стратегий, можно с разным успехом использовать их сочетания.
Чтобы показать, как можно подойти к задаче (и решить ее) с использованием различных стратегий, мы обычно даем несколько решений.
В комнате, где находятся 10 человек, все поздоровались друг с другом, однократно пожав руку. Сколько всего было рукопожатий?
Воспользуемся стратегией визуального представления и построим схему. В ней 10 точек (которые расположены так, что никакие три из них не находятся на одной прямой), представляющих 10 людей. Начнем с человека, представленного точкой А.
Мы соединяем точку А с каждой из остальных девяти точек и, таким образом, обозначаем первые девять рукопожатий.
Далее, из точки B исходят восемь дополнительных рукопожатий (поскольку А уже поздоровался с B, и линия AB уже построена). Аналогичным образом из точки C можно провести только семь линий к другим точкам (линии AC и BC уже построены), из точки D – шесть дополнительных линий и т. д. Когда мы дойдем до точки I, останется только одно доступное рукопожатие, а именно I с J, поскольку I уже поздоровался с A, B, C, D, E, F, G и H. Таким образом, сумма рукопожатий составит 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45. Это то же самое, что получается при использовании формулы для суммы первых n натуральных чисел:
где
n ≥ 2. (Обратите внимание на то, что последний рисунок – это десятиугольник, у которого построены все диагонали.)
Для решения задачи можно использовать стратегию учета всех возможностей. Возьмем показанную ниже сетку, в которую включены 10 человек, A, B, C