Число, пришедшее с холода. Когда математика становится приключением - страница 17

Шрифт
Интервал


1, 2, 4, 8, 16, 32, 64, 128.

Сто двадцать восемь ложек – это горшок риса. Теперь рис в зал стали носить уже несколько слуг. Для шести клеток третьего ряда вышло

1, 2, 4, 8, 16, 32, 64, 128

горшков риса. Только теперь до магараджи дошло, что мудрец запросил очень много риса, ибо 128 горшков риса соответствовали одному тяжелому, 50-килограммовому мешку. Теперь потребные количества риса приходилось отмерять именно такой мерой. Для восьми клеток четвертого ряда вышло

1, 2, 4, 8, 16, 32, 64, 128

полновесных стокилограммовых мешков риса. Последней восьмой клетке соответствовало количество риса, которого хватило бы на полную загрузку каравана из дюжины запряженных быками телег.

Урожай риса в стране магараджи был в тот год просто феноменально велик, и он надеялся, что ему хватит риса, чтобы расплатиться с мудрецом. Однако прикинув, сколько риса потребуется для того, чтобы заполнить клетки пятого ряда, магараджа сдался. В его государстве просто не хватило бы для этого риса.

Мудрец знал это – во всяком случае, приблизительно. Для того чтобы оценить, сколько рисовых зерен потребуется для заполнения всех клеток шахматной доски, мудрец воспользовался свойствами цифры ноль. На первой клетке находилось одно зернышко, а затем с каждой клеткой число зерен удваивалось. Число зерен на следующих десяти клетках распределилось так:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024.

Таким образом, на одиннадцатой клетке оказалось 1024 зернышка. Будем щедрыми, и округлим это число с недостатком до 1000 зернышек. Тогда для следующих десяти клеток мы получим следующий ряд чисел:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,

каждое из которых надо умножить на тысячу. Если мы, проявив неслыханную щедрость, снова округлим последнее число до 1000, то на двадцать первой клетке окажется больше 1000 × 1000 = 1 000 000 = 10>6 зерен. То же самое будет происходить и дальше: еще через десять клеток, на тридцать первой из них, уже окажется больше 1000 × 10>6 = 10>9 зерен; на сорок первой клетке получится больше 1000 × 10>9 = 10>12 зерен; на пятьдесят первой клетке будет уже 1000 × 10>12 = 10>15 зерен, а на шестьдесят первой клетке мы получим больше 1000 × 10>15 = 10>18 зерен. Это уже больше одного квинтиллиона рисовых зерен. На шестьдесят второй, шестьдесят третьей и шестьдесят четвертой клетках будет, соответственно, больше двух, четырех и восьми квинтиллионов рисовых зерен.