Число, пришедшее с холода. Когда математика становится приключением - страница 35

Шрифт
Интервал


Тем более становится понятным, почему Архимед ни минуты не медлил после того, как его озарила мысль о том, как можно применить закон вытеснения в решении задачи о короне Гиерона. Дело в том, что, когда Архимед пришел к решению, оно так отчетливо и наглядно предстало перед его внутренним взором, что он тотчас испугался: почему до сих пор эта идея никому не пришла в голову – ведь эта идея, как удачно говорят, просто витала в воздухе. В этот момент честолюбивым Архимедом овладел страх. Он испугался, что кто-то может его опередить и отнять пальму первенства. Этот страх едва ли был обоснован в меркантильных Сиракузах, населенных по преимуществу купцами и крестьянами, не интересовавшимися наукой вообще, а уж тем более математикой. Но кто может знать! Архимед, как все честолюбивые математики мира до него и после него, был убежден в том, что слава ученого состоит в том, чтобы стать первым, кто явит миру существование решения какой-то важной проблемы.

Гёттингенский математик Ганс Грауэрт однажды сказал о своей профессии: «Математика – не естественная и не гуманитарная наука. Математики – люди искусства: они создают духовное». Разумеется, «духовное», о котором ведет речь Грауэрт, не зависит от личности, которая его «творит». На самом деле личности, занимающиеся математикой, напоминают – даже когда они вторгаются в область неведомого – воспроизводящих, а не творящих художников. Даже Гаусс, величайший математик Нового времени, который снабжал свои глубочайшие прозрения такими звучными названиями, как theorema egregium (замечательная теорема), theorema elegantissimum (изящнейшая теорема), theorema aureum (золотая теорема), был скорее открывателем, а не творцом. Во всяком случае, они, эти открытия, так и выглядят в представлении Гаусса. Ситуация несколько иная, чем с шедеврами художников-творцов: произведение искусства неотделимо связано с личностью его автора. Иоганн Себастьян Бах самостоятельно принял решение построить гармонию «Хорошо темперированного клавира» именно так, как он ее построил, и никак иначе. Теперь же мы слушаем эти пьесы в исполнении Розалин Тюрек, Фридриха Гульды или Тиля Фельнера, и каждая из этих творческих личностей открывает в музыке каждый раз что-то новое, неожиданное и делится с нами своими открытиями. Достижения этих интерпретаторов можно сравнить с деяниями математиков, если говорить о математике как об искусстве.