Логика - страница 40

Шрифт
Интервал


или импликации. При этом логика проясняет, систематизирует и упрощает употребление «если…, то…», освобождает его от влияния психологических факторов.

Логика отвлекается, в частности, от того, что характерная для условного высказывания связь основания и следствия в зависимости от контекста может выражаться с помощью не только «если…, то…», но и других языковых средств.

Например, «Так как вода жидкость, она передает давление во все стороны равномерно», «Хотя пластилин и не металл, он пластичен», «Если бы дерево было металлом, оно было бы электропроводно» и т. п. Эти и подобные им высказывания представляются в языке логики посредством импликации, хотя употребление в них «если…, то…» было бы не совсем естественным.

Утверждая импликацию, мы утверждаем, что не может случиться, чтобы ее основание имело место, а следствие отсутствовало. Иными словами, импликация является ложной только в том случае, когда ее основание истинно, а следствие ложно.

Это определение предполагает, как и предыдущие определения связок, что всякое высказывание является либо истинным, либо ложным и что истинностное значение сложного высказывания зависит только от истинностных значений составляющих его высказываний и способа их связи.

Импликация истинна, когда и ее основание, и ее следствие истинны или ложны; она истинна, если ее основание ложно, а следствие истинно. Только в четвертом случае, когда основание истинно, а следствие ложно, импликация ложна.

Импликацией не предполагается, что высказывания А и В как-то связаны между собой по содержанию. В случае истинности В высказывание «если А, то В» истинно независимо от того, является А истинным или ложным и связано оно по смыслу с В или нет.

Например, истинным считаются высказывания: «Если на Солнце есть жизнь, то дважды два равно четыре», «Если Волга – озеро, то Токио – большая деревня» и т. п. Условное высказывание истинно также тогда, когда А ложно, и при этом опять-таки безразлично, истинно В или нет и связано оно по содержанию с А или нет. К истинным относятся высказывания: «Если Солнце – куб, то Земля – треугольник», «Если дважды два равно пять, то Токио – маленький город» и т. п.

В обычном рассуждении все эти высказывания вряд ли будут рассматриваться как имеющие смысл и еще в меньшей степени как истинные.