Или А, или В, или С. Но А нет и В нет.
Имеет место С.
Еще один логический закон говорит об ошибочных следствиях: «Если первое, то второе или третье, но второе неверно и третье неверно; значит, неверно и первое». Другая форма записи:
Если А, то В или С. Но не-В и не-С.
Не-А.
Рассмотрим пример рассуждения, своеобразно комбинирующего два последних закона.
Когда-то халиф Омар вознамерился сжечь богатейшую Александрийскую библиотеку. На просьбу сохранить ее этот религиозный фанатик, сам учившийся на ее книгах, ехидно отвечал, что книги библиотеки либо согласуются с Кораном, либо нет; если они согласуются с Кораном, они излишни и должны быть сожжены; если они не согласуются с Кораном, они вредны и поэтому также должны быть сожжены; следовательно, книги библиотеки в любом случае должны быть сожжены.
Это рассуждение опирается, конечно, на ложную предпосылку. Оно показывает, что фанатик тоже способен быть иногда логичным.
Закон, носящий имя средневекового логика и философа монаха Дунса Скота, характеризует ложное высказывание. Смысл этого закона можно приблизительно передать так: из ложного утверждения высказывания вытекает какое угодно утверждение. Применительно к конкретным высказываниям это звучит так: если дважды два равно четыре, то, если это не так, вся математика ничего не стоит. В подобного рода рассуждениях есть несомненный привкус парадоксальности. Особенно заметным он становится, когда в качестве заключения берется явно ложное и совершенно не связанное с посылками высказывание. Например: если дважды два равно четыре, то если это не так, то Луна сделана из зеленого сыра. Здесь явный парадокс.
Не все описания логического следования принимают данный закон в качестве правомерного способа рассуждения. Построены, хотя только сравнительно недавно, такие теории логического следования, в которых этот и подобные ему способы рассуждения считаются недопустимыми.
Известен анекдот об одном из основателей современной логики Б. Расселе, доказавшем своему собеседнику на каком-то вечере, что из того, что два плюс два равно пяти, вытекает, что он, Рассел, – римский папа. В доказательстве использовался закон Дунса Скота.
Отнимем от обеих сторон равенства 2 + 2 = 5 по 3. Получим 1 = 2. Если собеседник утверждает, что Рассел не является римским папой, то этот папа и Рассел – два разных лица. Но поскольку 1 = 2, папа и Рассел – это одно и то же лицо.