Есть, однако, утверждения, истинные не только в реальном, но и во всех возможных мирах вообще. Они представляют собой необходимые истины: нет такого мира, в котором они не выполнялись бы и сопоставлением с которым их удалось бы опровергнуть. Например, как бы ни был устроен произвольно взятый мир, в нем либо идет дождь, либо дождя нет. В этом мире не может быть также ситуации, когда в одно и то же время и в одном и том же месте дождь идет и вместе с тем не идет. Это означает, что утверждения «Дождь идет либо не идет» и «Неверно, что дождь идет и не идет», являющиеся частными случаями уже рассматривавшихся законов исключенного третьего и противоречия, представляют собой необходимые истины.
Научные законы принадлежат к случайным истинам, поскольку относятся только к реальному миру. Они верны для любых его пространственно-временных областей. Но их универсальность не простирается на иные возможные миры, где они могут оказываться ложными. Истины же логики, ее законы являются необходимыми истинами, справедливыми во всех мирах, включая, разумеется, и действительный. К необходимым истинам этого же рода нередко относят и законы математики.
Теория возможных миров – даже в этом упрощенном и схематичном ее изложении – является хорошим средством для прояснения смысла логической необходимости.
Один из принципов логики говорит, что если утверждение логически необходимо, то оно истинно. В терминах возможных миров это положение перефразируется так: если утверждение истинно в каждом из миров, оно истинно и в действительном мире. Очевидно, что это так, поскольку последний является одним из возможных миров.
Сходным образом обосновываются и другие положения, касающиеся свойств логической необходимости и раскрывающие ее содержание.
7. Классическая и неклассическая логика
Не успела в начале XX в. классическая математическая логика сложиться и окрепнуть, как началась энергичная ее критика. Эта критика велась с разных направлений. Результатом ее явилось возникновение целого ряда новых разделов современной логики, составивших в совокупности неклассическую логику. В ряде случаев оказалось, что реализованные при этом идеи активно обсуждались еще в античной и средневековой логике, но были основательно забыты в Новое время.
Несмотря на свои очевидные недостатки, классическая логика высказываний и логика предикатов остаются тем не менее ядром современной логики, сохраняющим свою теоретическую и практическую значимость. Явившись тем образцом, от которого отталкивались разнообразные неклассические системы, классическая логика, как правило, оказывается в определенном смысле предельным и притом наиболее простым случаем последних. Многие из них могут быть представлены как расширения классической логики, обогащающие ее выразительные средства.