Продвинутый Мартингейл - страница 2

Шрифт
Интервал


>0, которая подается на вход И-ящика. А на выходе И-ящика имеем сумму S, которая поступает в Кошелек и складывается с тем Капиталом, который там остался после того, как оттуда забрали сумму S>0. На этом цикл заканчивается.

В общем случае, сумма S>0 может быть только частью всего Капитала, а может быть и равной всему Капиталу, который в данный момент находится в Кошельке.

Сумма S может быть, в общем случае, равной нулю, может быть неравной нулю, но быть меньше S>0, и может быть больше S>0. На разных циклах И-процесса может получаться разный результат в виде соотношения S>0 и S.

Обратите внимание, что S и S>0 не могут быть равными друг другу (SS>0). (Почему так, см. ниже).

Управление капиталом на протяжении всего И-процесса в стратегии Мартингейла происходит путем определения нужной величины S>0 на каждом цикле.

2.1.1. Параметры И-ящика

Какая именно будет получаться сумма S на выходе, зависит от формальных параметров И-ящика. Этих параметров всего четыре (а точнее, даже всего три).

Первая пара параметров, это вероятность p того, что И-ящик в текущем цикле даст увеличение суммы (S>S>0), и вероятность q того, что И-ящик в текущем цикле даст уменьшение суммы (S<S>0).

Так как всегда выполняется равенство p+q=1, то на самом деле, это всего один параметр. Второй параметр всегда можно вычислить, зная первый.

Везде в этой книге будет использоваться параметр p – вероятность прибыльных сделок, вероятность выигрышей или, по другому, доля прибыльных сделок среди всех сделок, доля выигрышных игр, среди всех проведенных игр.

Всегда 0<p<1.

Для p=0 или p=1 получаем тривиальные случаи всегда убыточного И-процесса или всегда только прибыльного И-процесса, соответственно. Такие случаи рассматривать не будем.

Также в этой книге иногда параметр p будет для удобства выражаться в процентах (0%<p<100%).

Ещё два параметра И-ящика, это доля прибыли α и доля убытка β. Эти параметры показывают, на сколько изменится S по отношению к S>0:



Другими словами:



Всегда α>0.

Если α=0, то И-процесс никогда не будет прибыльным. Этот случай в книге не рассматривается.

Всегда 0<β≤1. Если β=1, то на убыточном цикле теряется вся сумма S>0, вошедшая в И-ящик, то есть получается S=0. Такое происходит, например, в казино при игре в европейскую рулетку.

При β=0, И-процесс никогда не будет убыточным. Этот случай в книге также не рассматривается.