Достигнутые результаты теоретических исследований, посвящённых этой проблеме, были изложены в научной работе автора «Совмещённая коррекция курса и координат местонахождения летательного аппарата (ЛА)» опубликованной в сборнике научных трудов Лётно-исследовательского института МАП. В этой теоретической работе показана возможность осуществления одновременной (совмещённой) коррекции счисленных координат местонахождения самолёта и курса путём выполнения последо-вательно двух радиолокационных коррекций. Рассмотрены условия взаимного расположения самолёта и двух радиолокационных ориентиров, при которых достигае-тся наилучший результат коррекции, а также выведены конечные формулы для вычисления составляющих поправок. В работе рассмотрены два варианта совмещённой коррекции:
Путём двух последовательных радиолокационных коррекций соответственно по двум ориентирам, выполняемых обычным способом c применением устройства управ-ления метками;
Путём радиолокационной коррекции по первому ориентиру обычным способом и радиолокационной коррекции по второму ориентиру с использованием курсозадатчика курсовой системы.
С завершением второй фазы коррекции в обоих вариантах вычисленные поправки вводятся в текущие показания курса и координат местонахождения самолёта. Следует отметить, что в качестве точечных ориентиров для коррекции могут быть использованы радиомаяки и соответственно бортовые радиотехнические средства навигации. Указанная теоретическая работа стала основой для реализации в ЦНВУ режима совмещённой коррекции курса и координат местонахождения самолёта, причём в качестве же способа его осуществления был выбран второй вариант. Как и в предыдущем случае, технические решения, связанные с осуществлением совмещённой коррекции, защищены авторскими свидетельствами на изобретения. Следует также отметить, что позже при создании нового компьютеризированного комплекса Е. С. Липин (Главный конструктор комплекса) и О. А. Артюховский применили подобный двухпозиционный метод коррекции для устранения ошибок инерциальных систем, используя для этой цели астрономическую систему навигации. Как и в предыдущих вычислителях НБА и НА-1 в ЦНВУ основной, решаемой вычислителем задачей является преобразование координат из полярной в прямоугольную систему координат и наоборот – из прямоугольной в полярную. Кроме того, в ЦНВУ осуществляются арифмети-ческие операции и операции масштабирования. Для преобразования координат в ЦНВУ использован векторный построитель, аналогичный используемому в НБА. В отличие от последнего в нём применены более точные синусно-косинусные трансформаторы, а в качестве потенциометров, включённых в их обмотки, использованы 20-ти оборотные реверсивные потенциометры, отличающиеся высокой точностью и разрешающей способностью. Этот потенциометр, изобретённый А. А. Прозоровым и В. А. Железновым, по своему замыслу и техническому воплощению не имел аналогов. Заметную роль во внедрении в производство этого потенциометра сыграл П. А. Гудков, механик-самоучка, создавший серию специальных станков, осуществляющих намотку тонкого высокоомного провода на проволочный каркас.