Как предсказать курс доллара. Поиск доходной стратегии с языком R - страница 2

Шрифт
Интервал


С 2009 по 2015 год В. Г. Брюков на портале Банкир.Ру ежемесячно публиковал прогнозы на будущий месяц по курсам пятнадцати ведущих мировых валют. Насколько точными при этом были прогнозы, наши читатели могут убедиться сами, посетив на этом сайте рубрику «Валютный рынок». Сотрудничество с этим известным порталом, а также большой интерес, проявленный читателями к книге «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews», стали для автора важным стимулом, способствовавшим написанию новой книге по валютному прогнозированию.

В 2017 году у автора вышла в электронном виде еще одна книга по этой теме: «Как предсказать курс доллара. Расчеты в Excel для снижения риска проигрыша», тогда же вышло и второе дополненное издание «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews», опубликованное также в электронном виде. Все желающие могут приобрести эти книги (а также ряд других, не связанных с проблемами валютного прогнозирования) в интернет-магазинах компании ЛИТРЕС и ее партнеров. Так, что книга «Как предсказать курс доллара. Поиск доходной стратегии с языком R» – уже третья из этой серии, причем, полное представление о ряде важных аспектах валютного прогнозирования можно получить, только ознакомившись с содержанием всех этих трех произведений.

Глава 1. Основы работы с языком R

Созданный в 1993 году язык программирования R сегодня получил во всем мире очень широкое распространение, в том числе и для анализа рисков, связанных со сделками на различных финансовых рынках, включая и торговлю на валютном рынке. Это объясняется, главным образом, тремя основными причинами.

Во-первых, потому что R – это чрезвычайно эффективный язык программирования, с помощью которого можно выполнять практически все способы статистического и графического анализа данных.

Во-вторых, в отличие от разного рода платных статистических программ, язык R невероятно гибок, что позволяет создавать пакеты прикладных программ (приложений) для самых различных сфер деятельности, в том числе и для прогнозирования валютного и прочих финансовых рынков. Причем, количество этих приложений бурно растет. Так, на конец августа 2018 года в глобальном репозитарии (хранилище) CRAN (The Comprehensive R Archive Network – Полный сетевой архив R) находилось 12940 доступных для загрузки пользователями прикладных программ.