Вернемся к системе формирования цвета человеческим глазом. Есть два способа формирования цвета: аддитивный, при котором происходит сложение цветов непосредственно излучающих объектов, и субстрактивный, при котором происходит вычитание определенных цветов из отраженного белого света. Субстрактивная система формирования цвета используется, например, при работе красных стоп-сигналов в автомобиле: красное стекло, за которым находится лампочка – источник белого света, является фильтром, который поглощает остальную часть спектр, пропуская только красный свет. Так же работают и жидкокристаллические мониторы: перед источником непрерывного спектра находится матрица жидкокристаллических фильтров, которые поглощают свет различных длин волн в зависимости от подаваемого напряжения. Формирование света с помощью аддитивной системы используется, например, в светодиодных лампах, которые будут более подробно обсуждены в следующем разделе. В таких лампах восприятие белого света обеспечивается смешением синего света люминесценции полупроводникового кристалла и желтого цвета широкого спектра люминесценции порошкового люминофора.
Математически это можно описать с помощью цветовой модели, основной целью которой является количественное сравнение различных цветов. В основу этой модели легло определение трех – по числу типов колбочек – функций цветового соответствия, с помощью которых путем умножения на них спектра источника света можно получить трехкомпонентный вектор, описывающий детектируемый глазом цвет. В колориметрии данные функции принято называть функциями цветового соответствия (англ.color matching functions). Эти функции были экспериментально определены на основе проведенных в конце 1920-х – начале 1930-х годов Дэвидом Райтом и Джоном Гилдом экспериментов.
Рис. 3 а) Функции цветового соответствия Стандартного колориметрического наблюдателя, определённые комитетом CIE в 1931 году на диапазоне длин волн от 380 до 780 нм (с 5 нм интервалом) и б) диаграмма CIE
Чтобы определить компоненты вектора детектируемого света, спектр источника (S (λ)) следует по очереди умножить на каждую из функций цветового соответствия ((λ), ȳ (λ) и (λ)) с последующей нормировкой:
Полученные значения определяют координаты цветового вектора в трехмерном пространстве, однако удобнее задавать значение цвета через