Все это было весьма интересно, но на протяжении почти столетия из всего этого мало что вышло практического. Нескольким поколениям студентов, в том числе Клоду Шеннону эта тема преподносилась как забавный философский феномен. В то время, вспоминал он, его в основном забавлял звук слова: «Бу-у-у-улева». Но какие-то крупицы этих знаний остались у него, когда он пытался разобраться в коробке со ста переключателями. Он чувствовал некую простоту правил Буля, присутствующую даже в самых чертовски сложных уравнениях, которые он решал для Буша. Замкнуть, разомкнуть. Да, нет. 1, 0. Что-то из этих знаний осталось с ним, когда он в 1937 году покинул МТИ, уехав на лето в Нью-Йорк. Другой уникальной группой людей, подошедших к сопоставлению логики с электрическими цепями достаточно близко, были умы из «Лабораторий Белла», взявшие к себе Шеннона на летнюю стажировку. Будучи временно нанятым сотрудником, Шеннон, вероятно, занимался самыми рядовыми делами, связанными с промежуточной помощью, и его присутствие в «Лабораториях» летом 1937 года не было отмечено в истории заведения, но именно здесь он смог поделиться своим глубоким пониманием математической логики и продвинутым знанием электрических схем, а еще настойчивым ощущением, что эти две сферы взаимосвязаны. Более того, он передал свои знания прямо в сердце телефонной компании, владевшей самой сложной и протяженной электросетью в стране. И его работа была частью математических попыток заставить эту сеть работать эффективнее и дешевле.
Самое важное – примерно в это время он впервые взялся записывать свои мысли и начал связывать вместе то сходство, которое, по его мнению, было в анализаторе Томсона, сетях «Лабораторий Белла» и логике Буля. Спустя полвека Шеннон попытался вспомнить тот момент прозрения и объяснить, как ему удалось первым понять, что означали эти переключатели. Вот что он рассказывал журналисту:
«Дело не в том, что что-то “размыкается” или “замыкается”, или в словах “да” или “нет”, о которых вы говорите. Смысл заключается в том, что две вещи в одной последовательности в логике описываются словом “и”, поэтому вы говорите: это “и” это. В то время как две вещи в параллели описываются словом “или”… Есть контакты, которые замыкаются, когда вы оперируете реле, а есть другие контакты, которые размыкаются, и поэтому слово “нет” относится к этому аспекту реле… Люди, которые занимались релейными цепями, конечно, понимали, как делать эти вещи. Но у них не было математического аппарата булевой алгебры».