В
>1С
>4D
>3 – хромосома от второго родителя. Вместе они образуют одну хромосомную пару. Колонка из A
>1 и А
>3 (буквы выделены жирным шрифтом) составляет позицию генов. Если брать их по отдельности, то A
>1 – это аллель, или ген от одного родителя с одной наследуемой чертой. Ограниченное количество аллелей возможно в любой позиции генов, а взаимодействие аллелей от матери и отца определяет те качества, которые наследует их потомство. Шеннон перевел в символы возможные аллели с помощью чисел в нижнем индексе. А
>1 и А
>3 – это различные проявления одной черты (к примеру, цвета волос – единица обозначает каштановый, а двойка блондин), а качество, которое превалирует, зависит от того, какой ген доминирует.
Теперь еще больше упростим эту схему. Допустим, мы хотим изучить целую популяцию индивидуумов, выбрав всего две черты, А и В.
А что если целую популяцию и все ее релевантные гены можно представить в виде всего одного алгебраического выражения?
И снова каждый ряд символов получен от одного родителя, а каждая колонка обозначает позицию гена. Скажем, существуют две возможные аллели для А (к примеру, каштановые и светлые волосы) и три для В (высокий, среднего роста и низкорослый). В этом случае получится двадцать один генетически отличный от других индивидуум (поверьте нам), варьирующийся от
A>1B>1
A>1B>1
до
A>1B>3
A>2B>2
Итак, как мы можем смоделировать генетические изменения населения со временем, или предсказать результаты его произвольного смешения с другой группой? Как будет выглядеть новая популяция через пять поколений? А через тысячу поколений?
Если бы мы были наделены неограниченным количеством времени и бумаги, то могли бы произвести расчеты отдельно для каждого из двадцати одного индивидуума, соединившихся в произвольном порядке с представителями другой группы. В результате мы получили бы одно поколение, а дальше мы могли бы вновь и вновь повторять этот процесс до бесконечности. А что если целую популяцию и все ее релевантные гены можно представить в виде всего одного алгебраического выражения? Оно должно быть, как отметил Шеннон, одновременно компактным и наглядным: достаточно компактным, чтобы использовать его в качестве единственной величины в уравнении, и наглядным, чтобы его можно было «разобрать» на все его составляющие, когда нам нужно остановить циклы рекомбинации и изучить результаты.