Значимые фигуры. Жизнь и открытия великих математиков - страница 4

Шрифт
Интервал


, причем местные жители, разумеется, прекрасно знали о них. Но в те дни европейцы считали, что для того, чтобы что-то «открыть», одни европейцы должны сообщить об этом другим европейцам. Математические первопроходцы не просто исследуют джунгли, существовавшие испокон веков. В определенном смысле они сами создают джунгли вокруг себя в процессе движения; новые растения как будто сами пускаются в рост в оставленных ими следах, стремительно становятся молодыми деревцами, а затем могучими деревьями. Однако создается впечатление, что джунгли эти действительно давно существуют, потому что вы не можете сами решать, какие деревья пойдут в рост. Вы решаете, где идти, где прокладывать тропу, но не можете по собственному желанию «открыть» рощу великолепных красных деревьев, если на самом деле в этом месте вас ждут трясина и мангровые заросли.

Именно здесь, мне кажется, кроется источник популярного до сих пор платоновского представления о математических идеях, согласно которому математические истины существуют «на самом деле», но существуют в некоей идеальной форме, в своего рода параллельной реальности, которая всегда существовала и будет существовать. Согласно этим представлениям, когда мы доказываем новую теорему, мы всего лишь находим то, что и так всегда существовало. Не думаю, что буквальный платонизм имеет смысл, но он довольно точно описывает процесс математических исследований. Выбирать не приходится: можно только трясти деревья и смотреть, не упадет ли с них что-нибудь полезное. В книге «Что такое математика на самом деле?» Ройбен Херш предлагает более реалистичный взгляд на математику как на общечеловеческий ментальный конструкт. В этом отношении математика похожа на деньги. «На самом деле» деньги – это не металлические кружочки, не бумажки и даже не числа в компьютере; это общий для людей набор договоренностей о том, как мы обмениваемся металлическими кружочками, бумажками или числами в компьютере друг с другом или обмениваем их на вещи.

Херш резко критиковал некоторых математиков, которые, сосредоточив свое внимание на формулировке «человеческий конструкт», утверждали, что математику ни в коем случае нельзя назвать произвольной; ее никто не выдумывал. И социальный релятивизм здесь не годится. Это правда, но Херш совершенно ясно объяснил, что математика –