Вполне ясно, что ни один из этих способов анализа не может считаться единственно верным. Эти подходы также не являются и взаимоисключающими. Тем не менее, каждый из этих способов анализа подходит для одних суждений лучше, чем для других. Можно только с большой натяжкой сказать, что в суждении «автор «Макбета» есть автор «Гамлета»» «автор «Гамлета» означает признак того, что именуется «автором «Макбета»». Более подходящим представляется способ рассмотрения данного суждения как утверждающего отношение тождества в денотации, несмотря на различие в содержании, или коннотации.
В логическом смысле еще более важно отметить, что если мы не проведем различия между суждениями о принадлежности к классу, с одной стороны, и суждениями, представляющими какие-либо другие отношения, – с другой, то мы упустим важный фактор, оказывающий влияние на природу импликации. Так, в то время как одни отношения являются транзитивными, отношение принадлежности к классу таковым не является. Суждение «Архимед был более великим математиком, чем Евклид, и Евклид был более великим математиком, чем Аристотель» имплицирует суждение «Архимед был более великим математиком, чем Аристотель». Однако суждение «Архимед был гражданином Сиракуз, и Сиракузы были членом греко-карфагенского союза» не имплицирует суждения «Архимед был членом греко-карфагенского союза».
В главе VI мы систематически изучим отношение между классами и логические свойства отношений в целом.
Рассмотрим суждение «все математики – квалифицированные логики». Его нельзя просто отнести к суждениям субъектно-предикатного вида, поскольку в нем определенному индивиду не предицируется какая-либо характеристика или качество. В нем также не утверждается и то, что индивид является членом некоторого класса. Также не будет корректным сказать, что в нем утверждается некоторое отношение между одним индивидом и другим индивидом или несколькими индивидами. В нем утверждается особое отношение включения между двумя классами. Суждения об отношениях между классами, т. е. о полном или частичном включении (или исключении) одного класса из другого, называются родовыми общими суждениями. Мы уже указали на то, каким должен быть правильный анализ таких суждений, когда рассматривали анализ категорических суждений в предыдущем разделе. Попытаемся теперь прийти к тому же самому заключению с другой стороны.