[(Треугольник является равнобедренным)′∨ (углы у его основания равны)] ≡ [(Треугольник является равнобедренным) ⊃ (углы у его основания равны)].
Из этого следует, что для любого условного суждения существует эквивалентное дизъюнктивное суждение, эквивалентное строго дизъюнктивное суждение, а также эквивалентное условное суждение. Похожее утверждение может быть сделано и относительно любого дизъюнктивного суждения и любого строго дизъюнктивного суждения. С другой стороны, конъюнкция не является эквивалентной ни одной из трех других форм сложных суждений.
Теперь приведем эквивалентные суждения для суждения «если он счастлив в браке, то он не бьет свою жену». Этими суждениями являются: «если он бьет свою жену, то он не является счастливым в браке», «он не является счастливым в браке или он не бьет свою жену» и «неверно, что он счастлив в браке и вместе с этим он бьет свою жену». В символьной записи данные суждения выглядят следующим образом:
[(Он счастлив в браке) ⊃ (он не бьет свою жену)] ≡ [(Он не бьет свою жену)′⊃ (он счастлив в браке)′ ≡ [(Он счастлив в браке)′∨ (он не бьет свою жену)] ≡ [(Он счастлив в браке) . (он не бьет свою жену)′]′
Данные эквивалентности можно выразить более компактно, а формы эквивалентных суждений – более ясно, если принять еще некоторые конвенции относительно символов. Пусть р означает антецедент условного суждения, a q – его консеквент. Любое условное суждение может быть формализовано как (р ⊃ q). Данные эквивалентности тогда могут быть записаны следующим образом:
(р ⊃ q) ≡ (q′ ⊃ р′) ≡ (р′∨ q) ≡ (p . q′)′
В главе VII мы рассмотрим эквивалентности между системами суждений. Однако на данном этапе можно предложить пример двух суждений, являющихся эквивалентными в силу своего места в определенной системе. Пусть р = «в физике Ньютона свет отражается от поверхности так, что угол падения равен углу отражения» и пусть q = «в физике Ньютона свет отражается от поверхности так, что его путь является минимальным». Суждения р и q эквивалентны.