Введение в логику и научный метод - страница 94

Шрифт
Интервал



Теорема II. Бо′льшая посылка должна быть общим суждением.

Поскольку одна из посылок является отрицательным суждением, заключение также является отрицательным суждением (аксиома 4), и Р, больший термин, должен быть распределенным. Поэтому Р должен быть распределенным и в большей посылке (аксиома 2), а сама посылка должна быть общим суждением.

Теорема I исключает комбинации АА и AI, а теорема II исключает комбинации IA и ОА. В данной фигуре у нас остается четыре комбинации: АЕ, АО, ЕА и EI, из которых мы получаем шесть правильных модусов. АЕЕ (Camestres), [АЕО], АОО (Baroco), ЕАЕ (Cesare), [ЕАО] и ЕIO (Festino). Модусы, обведенные в круг, являются ослабленными силлогизмами.

§ 8. Специальные теоремы и правильные модусы ТРЕТЬЕЙ фигуры

Исходя из символьной формы третьей фигуры


мы можем доказать следующие теоремы.

Теорема I. Меньшая посылка должна быть утвердительной.

Предположим, что меньшая посылка – отрицательная. Тогда заключение будет отрицательным суждением (аксиома 4) и Р, его предикат, будет распределен. Поэтому Р будет распределен и в большей посылке (аксиома 2), и сама большая посылка будет отрицательной. Однако это невозможно (аксиома 3). Поэтому меньшая посылка не может быть отрицательной.


Теорема II. Заключение должно быть частным суждением.

Поскольку меньшая посылка должна быть утвердительным суждением, S в посылках не может быть распределенным.

Поэтому S не может быть распределенным и в заключении (аксиома 2), а само заключение должно быть частным суждением.

Первая теорема исключает комбинации АЕ и АО, и у нас остается шесть комбинаций: AA, AI, EA, EI, IA, OA. Помня о второй теореме, мы получаем шесть правильных модусов: [AAI] (Darapti), AII (Datisi), [ЕАО] (Felapton), ЕIO (Ferison), IAI (Disamis) и ОАО (Bocardo). В этой фигуре нет ослабленных модусов. Два модуса, обведенные в круг, называются усиленными силлогизмами, поскольку то же самое заключение может быть получено, даже если мы заменим суждение одной из посылок подчиненным ему суждением.

§ 9. Специальные теоремы и правильные модусы для четвертой фигуры

С помощью символьного выражения четвертой фигуры


мы можем доказать следующие теоремы.

Теорема I. Если большая посылка является утвердительным суждением, то меньшая посылка является общим суждением.

Если большая посылка является утвердительным суждением, то его предикат, М, нераспределен. Следовательно, М должен быть распределенным в меньшей посылке (аксиома 1), а сама меньшая посылка должна быть общим суждением.