Ранним утром 7 марта 2009 г. со стартовой площадки на базе ВВС США на мысе Канаверал во Флориде отправилась в космос ракета-носитель. На ее борту находился первый космический телескоп, предназначенный для поиска планет.
Телескоп назвали в честь Иоганна Кеплера, астронома, проделавшего кропотливую работу по вычислению параметров движения планет в нашей Солнечной системе. В знак уважения к вкладу Кеплера в прогнозирование транзитов ближайших к нам планет его именем был назван аппарат, предназначенный для наблюдения за транзитом тысяч планет.
Оказавшись в космосе, телескоп «Кеплер» выполнил маневр, в результате которого оказался на орбите, позволяющей ему следовать за Землей вокруг Солнца. Наконец 7 апреля был сброшен пылезащитный слой, и на «Кеплер» впервые попал свет. Благодаря зеркалу диаметром 1,4 м, направленному на богатый звездами участок нашей Галактики в районе созвездий Лебедь и Лира, «Кеплер» был способен наблюдать более чем за 100 000 звезд одновременно.
Для обнаружения проходящих по диску звезды экзопланет космический телескоп использовал транзитный метод, фиксируя падения яркости звезд. Находясь за пределами рассеивающей свет атмосферы Земли, «Кеплер» имел намного большую чувствительность к малейшим колебаниям света звезд, чем любой телескоп на поверхности нашей планеты.
Проект имел грандиозный успех. На состоявшемся в январе 2015 г. зимнем заседании Американского астрономического общества команда проекта «Кеплер» объявила о 1000-м подтверждении открытия планеты. И это не считая свыше 4000 кандидатов в планеты, существование которых вызывало сомнения и нуждалось в подтверждении в ходе дальнейших наблюдений. Официальной целью миссии считался поиск землеподобных планет, но истинное значение работы телескопа «Кеплер» заключается в демонстрации колоссального разнообразия и многочисленности планет в нашем галактическом окружении. За 20 лет мы перешли от теорий, в которых все аспекты процесса формирования планет описываются исключительно на материале одной-единственной Солнечной системы, к теориям, основанным на сопоставлении более чем 500 различных планетных систем.
Оптимальным объектом для применения как транзитного метода, так и метода лучевых скоростей являются крупные планеты, обращающиеся по близким к звездам орбитам. Такие планеты блокируют больше всего света, чаще всего проходят по диску звезды и достаточно массивны, чтобы вызвать поддающиеся фиксации колебания светила. Вследствие этого мы знаем куда больше об объектах с короткими орбитами, чем о тех, что находятся на задворках планетных систем.