Из уравнений (3.1) и (3.3) можно прийти к уравнению (3.8).
Это уравнение непрерывности. Закон сохранения заряда.
Уравнения (3.5), (3.6), (3.7) характеризуют связь векторов поля с материальной средой.
Установим волновой характер ЭМП. При распространении ЭМП с конечной скоростью происходит запаздывание его по фазе, результатом чего является волновой характер распространения. Можно записать первые два уравнения Максвелла в комплексной форме и заменить в них индукции B и D напряженностями rot E и rot H и ввести функцию комплексной диэлектрической проницаемости проводящей среды при монохроматическом поле. Затем получится полная система уравнений монохроматического ЭМП с комплексными проницаемостью и напряженностями E и H. Волновой характер ЭМП этого гармонического во времени процесса в области без источников получается, если исключить вектор E или вектор H из в уравнениях (3.1) и (3.2), применив оператор rot и учитывая, что расходимость (div) вектора H = 0.
Для однородной непроводящей среды волновое уравнение переходит в уравнение Гельмголца, которое запишется в уравнения (3.9 – 3.10), где k = ω εμ – волновое число.
Об аналогии описания физических полей
Из рассмотренных математических моделей физических полей микромира видно, что гравитационное, акустическое и электромагнитное поля описываются при определенных условиях волновыми уравнениями (1.9, 2.7, 2.8, 3.9, 3.10). Мы имеем ситуацию, когда различные физические явления (поля) описываются аналогичными дифференциальными и другими уравнениями. То есть между физическими явлениями существует аналогия, которая основывается на сходстве уравнений, лежащих в основе описания данных физических явлений
Аналогия ЭМП и акустического поля.
Например, акустические волны описываются уравнениями Гельмгольца (2.8). Электромагнитные волны описываются уравнениями Максвелла, которые после соответствующих преобразований также переходят в уравнения Гельмгольца для однородной среды (3.9). Т.е. в двумерном случае уравнения Максвелла сводятся к двум независимым уравнениям для векторов напряженности электрического и магнитного полей (4.1 – 4.2).
Такие же уравнения можно записать для каждой из составляющих векторов вдоль осей x, у, z. В результате для каждой составляющей получаем уравнение Гельмгольца. Поэтому в двумерном случае решения акустических и электромагнитных задач совпадают. Однако при сопоставлении решений задач необходимо привести в соответствие и граничные условия. Рассмотрим примеры [5].